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ABSTRACT

..... Large sets of coupled, nonlinear equations arise in a number of disci-

plines in connection with computer based models of physical, social and

economic processes. Solutions for such lar~e systems of equations must be

effected by means of digital computers using appropriately designed codes.

This paper addresses itself to the critically important problem of how

sensitive the solutions are to variations of, or inherent uncertainties in,

the parameters of the equation set. We review here, and also present further

developments, of our statistical method of sensitivity analysis. The sensiti-

vity analysis presented here is nonlinear and thus permits one to study the

effects of large deviations from the nominal parameter values. In addition,

since all parameters are varied simultaneously, one can explore regions of

parameter space where several parameters deviate simultaneously from their

nominal valups. I

Ue-deve4o 'here/ e theory of/O.ur-'method of sensitivity analysis,

then detail the method of implementation and finally present several examples

of its use to date.
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I. INTRODUCTIONt
Sets of coupled, non-linear equations arise in a number of dis-

ciplines in connection with computer based models of physical, social

and economic processes. These sets of equations may be differential,

integral or algebraic. They arise in such widely different fields as

reaction kinetics, combustion, air pollution, weather forecasting, upper

atmosphere phenomena, seismic analysis, operations research, systems

analysis, economics, etc. These model systems may contain as many as

100 equations, a very large number of parameters (in the form of couplinq

coefficients such as rate coefficients, transport coefficients, economic

coefficients, etc.) and a very large number of output variables. Solutions

for such large systems of equations must be effected by means of digital

computers using appropriately designed "codes".

As is well known, the computer solution of such large sets of

equations can be quite expensive. Even after such solutions have been

achieved one is still faced with a critically important problem: How

sensitive is the solution to variations of, or inherent uncertainties in,

the parameters of the equation set? This problem of "sensitivity" is

central to the understanding of the behavior of systems, and of the models

representing such systems, which contain a large set of coupled equations.

It is clearly important to know how sensitive the output variables are to

changes of, or uncertainties in, the parameters and which of the variables

are sensitive (or not sensitive) to which of the parameters. Until this

information is available, any proposed model must be suspect as a valid

representation of the real system. Furthermore, the accuracy to which the

model parameters, i.e., coupling coefficients, need to be determined
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via calculation or experiment depends upon the sensitivity of the output

variables to the value of the parameters. And finally, any desired

optimization of various output variables with respect to the coupling

coefficients requires a knowledge of the sgnsitivity.

Any attempt to determine the "sensitivity" by solving the set of

equations over and over aga'in, varying one parameter at a time over a

series of values while holding all the other parameters fixed at some

specific values becomes prohibitive in time and expense for the large

systems discussed here. This is readily demonstrated by a simple

calculation. For a model system of many coupled differential equations

with n parameters and m output variables, the above procedure for z

different values for each of the parameters, would require zn integrations

for each of the m variables, i.e., a total of m(z)n integrations. For m,

z and n large, not only will the computations be prohibitively expensive,

but the printouts would be so numerous that the analysis of the results

themselves will be a major problem.

In response to this need, we have developed a statistical method for

the sensitivity analysis of large systems of coupled non-linear equations.

The theory1 , its application to several test kinetics systems2 and an

analysis of the approximations3 have already been presented and the reader

is referred to these publications for various details which may not be

covered in this paper.

The purpose of this article is to recast and further develop our method

of sensitivity analysis into a form which has a number of advantages over

the previous formulation ( 3 ) . This new formulation permits us to discuss

sensitivity analysis from a more familiar and direct point of view. A

further advantage is that the relation to more conventional sensitivity
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analysis is now easily obtained. Finally, this article is user oriented.

We present here all the steps required for the readers to apply this method

of sensitivity analysis to their own systems.

It is very important to point out here that the implementation of our

method of sensitivity analysis is very simple even though the theoretical

analysis presented here appears to be quite involved. We will demonstrate

this in Sections III and IV where we discuss the implementation of the

method and present some specific examples.

A mathematical model of a physical system is a programmed computer

algorithm which returns a prediction y (y may be a vector) for any

physically realizable values of the parameters k and constants c, and

over any physically meaningful range of values of the independent variables

x. Such a model may return nonsense for certain combinations of values of

parameters and independent variables; but we assume that the usual theory

vs. experiment checks have already been carried out on the model, so that

gross deficiencies are not evident.

*Clearly, if these conditions are not met, there is a problem at a level

more basic than that which calls for a sensitivity analysis. We might

mention that our experience has shown that computer algorithms frequently

have been checked out only for a limited number of specific parameters values,

and not over the broader range of values for which the model presumably is

valid. In order to apply the sensitivity method discussed here (or any

other method of sensitivity analysis), it is necessary to "tune" the

algorithm to cover the broad range of values which the model is presumed

to represent. In unfavorable circumstances, this may require more work than

the sensitivity analysis itself.

-3-
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A model typically is characterized or controlled by "parameters",

as shown in figure 1. In the abstract, we might regard these parameters

as being a subset of the independent variables except for a very important

distinction. The true independent variables always cover a range of values

(possibly infinite) during a single run of the model. The simplest example

of such an independent variable is time in dynamic processes, but space

and many other variables could be independent in specific problems. The

parameters, on the other hand, have unique values during the course of a

single "run" of the model, although it may be necessary to vary these values

from one run to the next. The need for such variation may arise from any

of several possible sources, several of which are indicated in Fig. 1. For

example, a "physical" parameter certainly has an unique value, but this

exact value may not be known because of limitations of information; only

a range or distribution of values may be known. As another example, a para-

meter may be controllable in a particular physical circumstance only to

within some range, e.g., the impedance of a variable element of an electronic

circuit, or the mass loading of a spring in a mechanical system.

Separate also in definition from the independent variables and para-

meter are the fixed constants of the model, which do not vary within the

context of the class of problems of interest to the model user, and whose

values can be precisely specified. It should be noted, of course, that

what is a fixed constant in the context of one situation might be a para-

meter in the context of another situation; the distinction depends on

the particular case on hand.

The fact that the parameters can take on a range of values suggest

that a statistical approach to sensitivity analysis is appropriate. Instead

-4-
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of considering the effect on the output functions of one at a time variations

in each of the parameters as in a "brute force" method, we will construct

outputs averaged in one operation over probability distributions of all

the parameters. The distribution of the parameters can arise because of

experimental uncertainties or theoretical approximations, because of

"ignorance" of the value wfthin certain reasonable bounds, or might represent

upper and lower limits due to "stops" on the physical controls of the systems

being modeled.

Our method of sensitivity analysis proceeds by relating the probability

distribution of each parameter to a frequency and one new parameter s which,

as s varies, carries all the parameters through their range of variation.

The parameter s is varied, and the frequencies chosen in such a way that

the output variables at any fixed time become periodic in s.

The output variables can then be Fourier analyzed. As we shall show

below, the Fourier coefficients represent an average of the output variables

over the uncertainties of all the parameters. A unique correspondence

between the Fourier coefficients for the frequency w, and all its harmonics,

and the sensitivity of the output variables to the i'th parameter is estab-

lished. We compress all this information into partial variances S which

are the normalized sums of the squares of the Fourier coefficients of the

fundamental frequency w and all its harmonics. If S <S for a given output

variable, then this output variable is less sensitive to the i'th parameter

than to the j'th parameter. Thus, the partial variances measure the average

sensitivity of an output function to the variation (or uncertainty) of a

particular parameter. This average is over the range of uncertainties of

all the parameters, with their appropriate probability distributions, with

the exception of the parameter being considered. For this parameter, the

statistical property calculated is the variance.

-5-
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The sensitivity analysis presented here is nonlinear so that it permits

us to examine large deviations from the nominal parameter values. In

addition, since all parameters are varied simultaneously, one explores

regions of parameter space where more than one parameter is far from its

nominal value. Because of this thorough and systema&OC exploration of the

parameter space, it often turns out (see e.g. the examples of Section IV)

that sensitivities of an unexpected nature are revealed. A careful study

of the model will then reveal some complex coupling between variables,

unexpected prior to the analysis, which leads to the observed sensitivity.

In this fashion, one obtains deeper insights into the structure of the

complex system being studied. Another frequent and important finding is

that a number of sensitivity coefficients corresponding to a large set of

parameters turn out to be negligible. This permits one to reduce the

complexity of the set of model equations and focus one's attention on a

greatly reduced set of equations. The applications that we present in

Section IV will exhibit this feature.

The body of this paper is organized into four sections. In Section

II we develop the theory of our method of sensitivity analysis. Section

III details the implementation of the method and in Section IV we present

several examples of its use to date. In Section V we list a number of

unsolved problems on which further research would be most useful.

As previously mentioned, the implementation of the method is possible

without a knowledge of the details of the analytic development. Readers

primarily interested in the application of sensitivity analysis to some

specific problems can by-pass Section II and go directly to Section I1.

The examples of Section IV will serve to show the capability and range of

applicability of the method.

-6-
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The analytic development of Section II is divided into several sub-

sections which correspond to the separate steps that make up the sensitivity

analysis. We first introduce the parameter uncertainties (or variations)

together with a search curve procedure for exploring the values of the out-

put function at different points in parameter space. The path of the search

curve, parametized by a search variable s , is closed on itself in the

parameter space so that the output function is periodic in the search

variable and can be Fourier analyzed. Since the search curve is closed it

cannot cover all points in parameter space. The interpretation of the

Fourier coefficients as measures of sensitivity is exact only if the search

curve were to cover all the parameter space. To explore this error, we

introduce another space, "e-space", which has the same dimension as the

parameter space, and find that the error can be estimated and controlled.

Next we note that the Fourier coefficients must be evaluated numerically

as finite sums and we take into account the errors introduced by this pro-

cedure. The Fourier coefficients are then combined in a well defined

prescription to yield the desired sensitivity coefficients and the precise

meaning of these coefficients is detailed. This is followed by

a discussion of our original prccedure (I) and the relation of our'nonlinear

sensitivity analysis with the linear types of sensitivity analysis usually

employed in the past.
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II. Fourier Method of Sensitivity Analysis

A. Parameter Probability Distribution

We assume that a mathematical model of the desired physical system has

been constructed. For many problems the equation set takes the form

d f(t)
dt F(f,k) L(t=O) = (2.1)

with f a vector of m output functions (fl, f2 ' ... fm) at time t, k a vector

of n parameters (kl, k2, ... kn) which couple the nonlinear equations

represented by F, and with f(t=O) = (fl(o), f2 (o), ..., fm(O)) a vector

of given initial conditions. We assume that this set of equations can

be solved numerically for f(t) for any time t once f and k are specified.

Now consider each of the parameters k to range over a continuous

set of values - .k <=. We write

kL =  u) -=<u <+ , L - 1, 2, .. n (2.2)

where g,(u.) denotes some function of uz. The variable u

serves to vary the k In references (1-3) we chose the particular form

k (o) exp u., with k£O ) the nominal value of the parameter to permit a wide

range of variation of k with u. The u are now considered to be independent random variables

with their respective probability densities P (u) such that P (u )du, gives
the probability that the random variable ut lies in the range (u£, uI + du ).

Since the variables u are not correlated, then the probability density P(E)

is given the product of the P(u ), i.e.

n
p(2) Pn p(u) (2.3)

2=1
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By way of example, for many problems these densities P L(u) will be more or less

normally distributed with widths dependent on one's knowledge of the

dispersion of the values of the parameters k around the nominal value k(o.

We now introduce averages over these densities which, as we shall show,

will lead to useful measures of sensitivity. The n dimensional u-space

average of a function f(u) is defined as

<f(u)> -du f(u) P(u). (2.4)

The "brute force" method of sensitivity analysis corresponds to picking

a grid of points in the u-space, evaluating the solution of the equation

set (2.1) for the values of the parameters k(u) at these grid points and

examining how the output functions change with k(u).

4
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B. The Search Curve

In our method we construct a search curve in the u-space which is a

path in u-space parametized by the search variable s. The search curve is

constructed so that the n-dimensional u-space average of the output function,

Eq. (2.4) equals the one dimensional s-space average.

The translation of the probability density of the u's into s-space

is made by the introduction of n transformation functions G (i=l,2,...n)

such that

u= G,(sinws, (2.5)

In these equations, the wX are a set of incommensurate frequencies,

with one frequency assigned arbitrarily to each component uof the vector u.

The set of equations (2.5) then is a parametric representation of an n-dimen-

sional curve in the space of the variables (ul , u2, ... un). Variation of

s over the range - : s r + - generates a curve which traverses this n-dimen-

sional parameter space infinitely often in each direction, but with a relative

rate of traversal in each direction which is proportional to the frequency

L assigned to that direction.

Within this broad statement, the detailed shape of the curve depends

upon the specific functional forms chosen for the transformation functions

G . Inasmuch as we wish to obtain a specific distribution P (u ) in the

i-th direction, it is necessary to choose G so that the fraction of the

total arc length of the curve which lies between the values u and u + du

is equal to P{ (u i )du . The conditions for this equivalence were deduced

by Weyl (4 ) and in terms appropriate for a sensitivity analysis, derived in

an earlier paper in this series. It was found there that if GL(x ) is

-10-
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taken to be the solution of

dG (x)
WO - x2)112 P (GL) L 1 (2.6)

with the boundary condition G (0) - 0, then the arc length along this curve

is distributed in accordance with the previously stated requirement. This

equation can be solved by quadrature for any distribution function P . Thus,

it is possible to construct a one-dimensional manifold which covers para-

meter space exactly in accordance with the requirements of the statistics.

The curve generated by the set of equations (2.5) and (2.6) can be

referred to as a "search curve". As demonstrated by Weyl, the fact that

the frequencies w are incommensurate guarantees that the curve is space-

filling, by which we mean that it passes arbitrarily close to any preselected
n

point in parameter space for which the joint distribution n P (u )du
1=1I

does not vanish. Thus, the search curve is an ideal sampler of parameter

space, since it seeks out, in the sense just defined, each point in the

space, and it fills the space with a relative density matched to the joint

distribution of the parameters.

The search curve just described is an ideal which cannot be numer.,ally

realized. It is clear that the frequencies wL which are used in the com-

putational analysis cannot be incommensurate. Thus, we are limited to

commensurate frequencies which must be chosen to mimic as closely as possible

the above requirement of a space-filling curve. We shall, in the sections

that follow, discuss the errors introduced by the use of commensurate fre-

quencies. As in our earlier work(1' 2,3) we develop the theory here for

integer frequencies. The use of such frequencies leads to a search curve

that cannot fill the space but yields a closed path in the u-space. The

entire traversal of the u-space is then accomplished by letting the search

parameter s range between 0 and 2w.

-11 -



C. Fourier Coefficients

The use of integer frequencies in the transformation functions,

Eq. (2.5), implies that the u,.'s are periodic in s on the interval (0, 2w).

Since the output functions fi are a function of s through the u 's they are,

as a function of s, periodic on (0, 2w), i.e.

fi (s) = fi (s + 2w). (2.7)

The output functions can thus be Fourier analyzed to obtain their Fourier

coefficients
2w

A(') = cos(pW s) fi(s) ds; p = 0, 1, ...

2w (2.8)

B(i) = 1r sin(pwzs) fi(s) ds; p = 1, 2,.
pLA iW 01

In terms of an average over s-space, the Eqs. (2.8) can be re-written as

1 A(i) = <cos(pu2s) fi(s)>

(2.9)

BM p = <sin(pw s) fi(s)>

The importance of the Fourier coefficients in Eqs. (2.8) is that if

A(') and B(i) are zero for all p=l,2... then the i'th output fi is insensi-p. L pwI

tive to the values of the V'th parameter k . The Fourier coef-

ficients of the V'th fundamental and all harmonics of this V'th fundamental

measure the sensitivity of the output to the 1'th parameter. These statements

will be justified in the following section.

The Fourier coefficients can be interpreted as sensitivity measures

if we can show that the Fourier coefficients of a given fundamental and all

-12-



its harmonics segregate the effects of each parameter uncertainty on the

£ output functions. That is, if the Fourier coefficients A p and Bp (p=1,2...)

are affected by the uncertainty, i.e. range of variation, in the 'th
parameter k and are not affected by uncertainties in any of the other

parameters, then these Fourier coefficients isolate, one by one, the un-

certainties of the parameters k on the outputs. For the integer frequencies

that we use this is not strictly the case, but it is approximately true.

It is only for incommensurate frequencies i.e., those for which

n
Erii # 0 -- < ri < + = (2.10)
I=1

with ri integer, that the segregation of sensitivity is exact. However,

we shall show that the error made in the use of integer frequencies can be

quantitatively predicted and controlled. We are therefore still able to

use this very useful interpretation of the Fourier coefficients as proper

measures of sensitivity.

-13-
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D. The e-Space

In order to demonstrate the validity of this interpretation of the

Fourier coefficients, it is necessary to visualize the search curve in an

n-dimensional space which is different from the u-space. Let us introduce

an n-dimensional e-space with orthogonal axes 81, a2,... en defined by

= cs (mod 2w); = I, 2, ... n. (2.11)

In this n-dimensional space the search curve consists of a series of parallel

lines with the separation between the lines determined by the choice of

integers w . As simple examples, consider the two different choices of

integer frequencies

WI = 1, W2 = 2 (2.12a)

W1 = 11, W2 = 13. (2.12b)

The two dimensional 9-space and the search curves for these frequency

choices are shown in Figures 2 and 3.

It is intuitively clear that as the search curve does a better and

better job of covering the a-space, an integral of a function over s-space

can equally well be carried out as a multidimensional integral over e-space.

The way to obtain a uniformly dense coverage of the a-space is to choose

W, and w2 to be incommensurate, that is choose wl and w2 such that

rl I + r2 2 # 0 -c < rl, r2 <+C (2.13)

for any choices of the integers rl and r2 .(4) Integer frequencies cannot

be incommensurate but by choosing wl and w2 appropriately the values

-14-



of r, and r2 which lead to equality in Eq. (2.13) becmme very large. In

the two examples we have chosen, r1 = 2 and r2 - -1 lead to equality in

Eq. (2.13) for the first choice of integer frequencies while r 13 and

ra -11 are required for the second choice of frequencies. Thus the latter

frequency choice leads to a better coverage of the e-space as is evident

from Figures 2 and 3.

So far we have focussed on the search curve's coverage of e-space without

reference to the function which is being integrated. The accuracy of

replacing the s-space average by a _-space average not only depends on this

coverage but also on the values of the integrand since we want to equate

.rf(s)P(s)ds with .rf(e)P(2)de. As an extreme example, if the function f(s)

were constant as s ranged over (0, 2w), then one could equate the s and

0-space average without error for any choice of search curve. If f(s) is

a slowly varying function of s, then it will also be a slowly varying

function of e in 8-space and the error in equating the s and e-space

integrations will be small for any choice of search curve. This error is

likely to increase when f(s) and f(2e) are rapidly varying functions over

the ranges of s and e. In equating s and a-space averages one must therefore

consider both the coverage of space by the search curve and the "smoothness"

property of the output function f(s).

-15-



E. Relation Between s and &-Space Averages

Since the interpretation of the Fourier amplitudes as sensitivity

coefficients will be made in e-space it is necessary to relate quanti-

tatively the s and e space averages. This -elation is obtained by

expressing the output function f(s) as a function of e and noting that, by

construction, f(e) is multiply periodic in e on (0, 2r). We may thus expand

f(e) in a multiple Fourier series

f(a) = !Ic r r exp[-i(elrl+e 2 r2+...+enrn
)]

r, r2  rn 2.rn 1 

E Z cr exp[-ie'r] , - < ri < (2.14)
r -

The s-space Fourier coefficients defined in Eqs. (2.9) are a subset

of all possible such coefficients, namely the subset corresponding to a

fundamental frequency w and all its harmonics pw (p=2,3,...). In 8-space

we need the corresponding Fourier coefficients for our sensitivity analysis.

As discussed previously, these s and 8-space coefficients are not equal

because the search curve does not, for a closed path, cover the entire

e-space. The difference between these Fourier amplitudes, i.e.

.27t f(s)eiPwiSds (r- n..rdeff(e)exp[ipe L

is the difference between an integral calculated with the search curve, a

line through a space, and an integral calculated over the entire e space.

Written as averages, this difference is

-16-



<f(s)eiPwpS> - <f(e)eiPeZ> = e<f(e)e iPe> (2.15)
I

where e measures the relative error in equating the s and 6-space integrals.

Equivalently, we can write

' C , -C000 ... p .000 Co00 ... 0.00 (2.16)

where C. is the complex Fourier coefficient defined by

Cj (Aj iB)

(2.17)

c C (A + iBj

and where c0 ...p ...O0 is defined in Eq. (2.14).

In reference (3) and in Appendix I of this paper we show that by

appropriate choices of frequencies w, this error can be made as small as

desired. Qualitatively, as the frequencies become more incommensurate the

coverage of the .-space (and u-space) by the search curve improves and the

error made in equating s and e-space averages decreases. This can be

quantified through the introduction of an index M which is the order of

interference. Interferences arise when frequencies in the original set

can combine to form another frequency of the set. Thus, if we have three

parameters with associated frequencies wl, w2 and w3 and if, for instance,

W1 + w2 - w3 , an interference has occurred. As M increases the interferences

are postponed to higher and higher harmonics and the error decreases.

Assuming that e is negligible by appropriate choice of the set L we

then obtain

C mc c (.8CIW •C00... p ...O000 • pi 2.

-17-
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as the desired equality of s and e-space averages. The Fourier coefficient

c O0...p ..O00 reflects the sensitivity of the output function to the

uncertainty of the 'th parameter (and only to the V'th parameter) since

ri a 0 for all i t i in the e-space Fourier-coefficient cr1r2 .. rn . If all

the Fourier coefficients c 0 ... pC-.00 are zero for p 1,2..., then

we can conclude that the output function is not sensitive to the parameter k

Since, by (2.18), the e-space Fourier coefficients cP equal the s-space

coefficients C , we conclude that C is an appropriate measure of the

sensitivity of the output to the V'th parameter.

The conclusion that the Fourier coefficients C measure just the

sensitivity to k, can also be verified via an s-space analysis. The output

as a function of s, f(s), is constructed by expressing each parameter u i

as a periodic function of s with frequency wi (i=l,2,...n) as in Eq. (2.5).

Thus, f(s) consists of a sum of terms which oscillate at all possible linear

combinations of the n frequencies w. If we single out the frequency pw_

via the Fourier coefficient C , and if the frequencies are incommensurate,

no linear combination of the other frequencies can add up to form CpWZ and

interfere with the effect on the output from the O'th parameter kL. Since

we do use integer frequencies, it is necessary to introduce the concept of

order of interference M as defined in Eq. (Al.4). Thus, as long as we

restrict our attention to Fourier coefficients C for which there are no

interferences, or for which the interferences have been "postponedu, the

sensitivity is due entirely to the uncertainty in k .

-18-



F. Finite Fourier Coefficients

In performing the Fourier analysis on the computer, the s-space inte-

gration must be approximated by a finite summation. This procedure introduces

a further error into the method, which must'be analyzed. It is important

to minimize this error as efficiently as that due to interferences. The finite

sums are obtained by taking points from the search curve in e-space. If

we use a large number N of points for the summation we will obtain an

excellent approximation to the s-space integral. However, if the order of

interference M is low, the accuracy of the interpretation of the s-space

average as a sensitivity measure is not good. For example, if we fix N at

100, in the 2-dimensional examples discussed in section C above, the first

search curve leads to the set of points shown in Figure 2 while

the second search curve leads to the set of points shown in

Figure 3. Even though the first search curve is better approximated by the

100 points quadrature than the second one (since the density of points is

higher for the first curve), the overall distribution of points in the

second case is far more uniform. We therefore would obtain a more accurate

sensitivity measure in the second case than in the first.

The error introduced via the use of finite sums for the s-space inte-

grations can be analyzed in much the same fashion as the interference problem.

We denote the numerical approximation to the exact Fourier coefficient

C by C* where
PWLPWL

1 N
CP = qZ f(sq)exp[ipwSq] (2.19)

with

27Sq - q 1 1,2,...N. (2.20)
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Here N is the number of points used in the quadrature formula and Sq

(q = 1,2,...N) labels the individual points which are chosen to be equally
*

spaced along the search curve. Following the procedure used in Eq. (2.15),

we now form the difference between the s-space quadrature C and the

e -space average C to obtain

Sp*c (2.21)
pi p z P

where, see Eq. (2.18), c cp C00...p,...000.

The coefficient E* in Eq. (2.21) is a measure of the error introduced

by approximating the e-space integration as a finite sum at selected

points in s-space. These errors are in addition to those arising from

interferences. The evaluation of E*, as a function of w, N and the output

function, is presented in Appendix II.

It is important to have a ready estimate of the error term when doing

sensitivity analysis without becoming involved in long calculations for

each particular case under investigation. In response to this need we have

in ref. (3) developed bounds on the error which depend on w, N, and the type

of output functions being investigated. We present the salient ideas of

this method in Appendix III.

The equal spacing is not necessary; however, the analysis and control

of the error is facilitated by this choice. The use of other spacings

may actually lessen the error. See e.g. V.I. Krylov and L.G. Krugllkova,

Handbook of Numerical Harmonic Analysis, Israel Program for Scientific

Translations, LTD. Jerusalem, 1969.
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G. Partial Variances,t
The Fourier coefficients with which we have been concerned so far

correspond to the fundamental and harmonics of each frequency W . They

measure the sensitivity of an output to the'variations in all the parameters

such that if there is a sensitivity to the Lath parameter it will show up

only in the Fourier coefficients CpL (p=l,2,...). The uncertainty in the

other parameters is accounted for by averaging over their respective

distributions. It is apparent that other Fourier coefficients contain

additional information such as for instance the joint sensitivity to

parameters k and k. From this point of view, we can consider the variation

of the output arising from the uncertainties in all the parameters ki,

i=l, 2, ..., n and their couplings to be characterized by the variance of

the output function

2= <f 2> _ <f> 2 (2.22)

The interpretation of this variance can be explored by expressing it in

terms of the s-space Fourier coefficients C. (and the cos and sin coefficients

A. and B.) by using the Fourier series expansion of f(s) in Eq. (2.22).

This yields

02= c2 a1 (A2  +B2) (2.23)

where the prime on the sum excludes the J=O term. We recognize Eq. (2.23)

as Parseval's Theorem of Fourier analysis. However, we are calculating

finite sums for the numerical Fourier coefficients C*(A*,B *) and must there-
f ss f

fore modify Parseval's Theorem to obtain the numerical variance a . This is

just
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2  N/2 *2 *2- * + B .) + A(2.24)-2 j=-(N/2-1) = i (A 4j ) N/2 (.4
2*N/

The variance o is thus seen to be the sum of the squares of the Fourier

coefficients of all integer frequencies which enter into an N point

quadrature formula.

We now construct the part of o2 that corresponds to the variance of

the output arising from the L'th parameter uncertainty when the output is

averaged over the uncertainties in all other parameters. To do this, we

first integrate f(k) and f2 (k) over all uncertainties in the parameters

with the exception of the I'th parameter. We then calculate the variance

0. for these partially integrated output functions using equations (2.22)

and (2.23). The details of this calculation will be found in Appendix IV.

2*This result is then modified to yield the numerical variance a. corresponding

to the finite sums of Eq. (2.24). The ratio of this variance o* to the

total variance 02* of Eq. (2.24) is denoted by SW and is the partial

variance, i.e.

* 2* Nf2 I* 2
, _ oL P=-(N/ -1) .C(J=_(N12_j 1

The partial variance Sw, is the fraction of the variance of the output function

due to the uncertaintT-n the parameter k. when the output function is

averaged over the uncertainties, and coupling of uncertainties of all the

other parameters ki, i_9.

The partial variance can thus serve as an excellent measure of the

sensitivity of the output to the uncertainty of the L'th parameter. It can

be used to compare quantitatively sensitivities due to uncertainties in the

-22-
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different parameters ki , i=l,2,...n, since all variances are computed

2*relative to the total variance o . Clearly, the smaller the partial

variance, the less the effect of the changes of k on the output function.

We can therefore order the S 's as a function of z to obtain an ordered

lint of sensitivities for a given output function and between different

output functions.

The partial variances S will have the above interpretation only if
Z (see Appendix II)

the interferences and aliasing difficultiesAare minimized by proper choice

of w, and N. Since S involves Fourier coefficients of high index, the

appropriate values of w, and N for the minimization of these errors unfor-

tunately involve prohibitively large numbers of function evaluations.

However, as discussed previously, the Fourier coefficients decrease in

amplitude as their index increases. As a practical, computational matter,

our experience has shown that only a few harmonics of a fundamental need

be calculated before the amplitude becomes negligible. Thus, the relative

errors in comparing the partial variances S for different parameters k
Wi

are small even when only the Fourier amplitudes of the fundamental and the

first few harmonics are utilized.

Let us return briefly to the unstarred, i.e. analytic values of the

variance a2 (Eq. 2.23) and the corresponding partial variances S given by

2 IaC2O t = P-- P wS" -  =W 2: (2.26)

j=

where the prime on the sums excludes the p=O, j=O terms. Note that 02 in

the numerator involves only the sum of the squares of the Fourier coefficients

of the fundamental and all harmonics of the 'th frequency w while the

variances 2 in the denominator is constructed as the sum of squares of the
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Fourier coefficients of all the integer frequencies. It is readily apparent
n

from Eq. (2.26) and the development below why the sum I S of the partialz=1 9,

variances will not equal unity. Writing the variance 02 in terms of the

e-space Fourier coefficients according to Parseval's theorem yields

2 2, = ,
0 ~' ~ . . L'ic(Pl,P 2,...,pn)l 2  (2.27)

Pl P2 Pn

where the prime indicates that the term with all pi's equal to zero is

omitted. It is suggestive to rearrange the sum in Eq. (2.27) into groups

of terms where successively larger subgroups of the coefficients plP 2 , ...,pn

are nonzero. We define

02 1 ic(o,...,p ,...,o)12 (2.28a)
pi=l

p2 21
22 (2.28b)
i-3 - "

pi=l pj=l

02 = ...p ...Pj. • .•)2 (2.28c)
PC= 1pj=l Pk=l

etc.

so that

2 n n n-l 2 n n-l n-2 o 2+ +Z I k + . (2.29)

==l j=l i j=l j=l k=l Ljk

is written as a sum of terms with successively more complex contributions

to the total variance o2.

We have shown above that the first term of the decomposition (2.29)

corresponds to the part of total variance arising from the L'th parameter

uncertainty when the output is averaged over the uncertainties in all other
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rate coefficients. By the same methods one can also construct a2 by

integrating f(k) over all but the two parameters k and k. to obtain f(k ,k.)

and then forming the variance 2. of this function via Eq. (2.22). One

can proceed in an analogous fashion to generate the other, more complex,

variances in Eq. (2.29). These higher partial variances are thus seen to

c~ntain increasingly more detailed information about the coupling of

sensitivity among larger and larger groups of parameter uncertainties.

In our own investigations to date we have not exploited these higher

partial variances to obtain more detailed information about the sensitivity

of our test systems but we hope to explore their properties in some subsequent

studies.
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H. Fundamental Fourier Coefficients

In the original formulation of sensitivity analysis, references (1)

through (3), our efforts centered on the Fourier sine coefficients of the

fundamental frequencies, the B in our present notation. As shown there,

these Fourier coefficients can be expressed as u-space averages:

B= L aLf> (2.30)

where the average was taken over the u-space probability density

n
P(u) = n a./cosh(a u.) (2.31)

j=l j

with the P(u .aj) being bell shaped distributions whose widths are deter-

mined by the parameter a We have in these papers also explored various

other probability densities.

The Fourier coefficients B are thus seen to be directly related to

the rate of change of the output function with respect to the V'th parameter,

averaged over the uncertainty in all the parameters. This appealing

interpretation of the fundamentals does not yield as sharp a sensitivity

measure as do the partial variances since the integrand of the average

(af/(u,) is not necessarily a positive function and consequently could

erroneously indicate a small sensitivity by fortuitous cancellation in

different regions of parameter space. The partial variances are not subject

to this difficulty; if SW is zero or smaller it is definitely due to lack

of sensitivity of the output to the I'th parameter.
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I. Relation to Linear Sensitivity Analysis

We discuss here the relationship of our nonlinear method of sensitivity

analysis to the more usual methods of linear sensitivity analysis. In the

linear methods one computes, one way or another, the derivatives dc/du lu=0

for =l,2,...,n. This validity of this procedure must certainly be suspect

for output functions which deviate significantly from linearity in the

uncertainties in one or more of the parameters. It is thus clearly of interest

to investigate the conditions under which our Fourier amplitude analysis

reduces to the linear analysis.

To demonstrate this relationship, we express the average

(f(x)> F' .- r dx p(x)f(x) (2.32)

of a function f(x) in terms of the Taylor series expansion of f(x). The

multivariate probability distribution function p(x) can be written formally

as

n
p(x) 7 m~' inl (-i) 6 i (xi) (2.33)

where 6(1i)(xi) is the Pi'th derivative of the Dirac delta function with

respect to its argument,

u} z )1= P n=O

and where

m~u = <I~l xj> (2.34)

are the multivariate moments of p(x). Using this expression for p(x) in

-27-
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Eq. (2.32) yields

(1~)) m (~ .j n ~x= (2.35)
xi. Jx=O

This is the desired relationship between the average of a function of a set

of variables and the coefficients of the Taylor series expansion of the

function.

This analysis is readily applicable to the probability distributions

and output functions discussed in the previous sections. Let us choose,

for instance, the probability density

n
P(u) = n a./cosh (a u.)

j~l 3

of eq. (2.31) with moments

rn:2 +l
= 0

n 2
m 2  = i iE 2  (2.36)

where EK is the Euler number of index K. The output function in u-space

which we will consider is

f(u) 2 fU (2.37)

since,by Eq. (2.30), the average of this function with the probability density

P(_) of Eq. (2.31) yields the Fourier coefficient B i.e.
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at 1 1(2.38)

1 r2 "_ 1  a AU,

with

IE2uit ( i 1 2
_ 

(2.39)

Substitution of Eq. (2.39) into (2.38) then leads to the desired result

2 af(u) n 2 Iu 2 i 2i 0f(u)]SO,.Utlu__o<-o

where the prime on the n sum excludes the uI :2 = . = 0 term.

In order for linear sensitivity analysis to be valid, the higher

order terms of Eq. (2.40) must be small compared to the first, i.e. the

linear, term. These higher order terms will be small only if the output

function is essentially linear in the uncertainties of all the parameters.

The validity of a linear sensitivity analysis can therefore not be established

until some evaluation or estimation of these higher order terms has been

carried out. Our Fourier amplitudes, as shown in Eq. (2.40), do include the

effects of the higher order terms and therefore represent nonlinear sensitivity

measures.

The results of this section can easily be transcribed to show that the

partial variances, SW , as defined in Eqs. (2.25) and (2.26), are also non-

linear sensitivity measures which include the effects of the higher terms of

the expansion (2.40). This is readily evident from the definition of the

variances 2 and a2 in terms of the Fourier amplitudes, Eqs. (2.23) and (A4.2).
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III. Implementation

The sensitivity coefficients are given by sums of the solutions of

the equation set at selected points in the uncertainty space. From the

point of view of computation, all that is required is the solutions of the

equation set for different combinations of the parameters (k1 ,k2 ,...k).

The analysis of section II shows which combinations of solutions to sum

and interprets the sum as a sensitivity coefficient.

The parameters are varied simultaneously by relating them to a search

variable s and a frequency set w = (l"2" "wn) as given in Eqs. (2.2) and

(2.5), i.e.

kt = g2[GI(sinws)] (i=l,2,...n). (3.1)

The frequency w and transformation functions G are chosen such that the

path in k-space induced by varying s traverses k space in accordance with

the probability density P (u ) representing the uncertainty in each parameter

k,. As long as k and s space averages are properly connected, sensitivity

coefficients can be calculated as s-space, i.e. one dimensional, quadratures.

The appropriate s-space averages to calculate are the s-space Fourier

coefficients defined in Eq. (2.8). The analysis of section II demonstrates

that the combination of Fourier coefficients which we call the partial

variances
1 (IAi ) 12 + B(1) 12)
_ _ . I__ i_ _ _ (3.2)

measure the sensitivity of the ith variable to the uncertainty in the 'th

parameter. The sensitivity coefficient SO ) is that part of the variance

-30-



of the ith output which arises from the uncertainty in the Pth parameter

when the output is averaged over the uncertainties in all other parameters

(cf. section IIG).

The Fourier coefficients can be calculated if solutions of the equation

set eq. (2.1) are known for values of k prescribed by the transformation

functions G and frequencies w. Since we assume that the reader has available

a method of solution of the equation set, all that need be done to obtain the

sensitivity coefficient is to "add" the solutions according to Eq. (3.2).

Implementation of the above scheme on a computer requires certain

compromises which lead to approximations to the sensitivity coefficients.

We have shown in section II that these approximations are controllable;

here we investigate their impact on the numerical calculation of the

sensitivity coefficients.

In brief, we are replacing a multidimensional integral over the uncer-

tainty space (the k space) by a quadrature formula which is a sum over N

points in k space. The quadrature requirements fall loosely into three areas:
1) use of integer frequencies w; 2) use of a finite number of points N;

3) the choice of frequencies w. We now discuss these issues in turn.

1. Integer Frequencies

If the search curve is to come arbitrarily close to every point in

space, the frequencies si that define this curve must be incommensurate:

n
i!i r S1

i # 0 (ri's integer) (3.3)

A consequence of this condition is that at most one of the frequencies

can be rational, with all others being irrational. But a computer can only

represent an irrational number approximately. Of course, the difference

between the irrational and its rational approximation can be made smaller
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and smaller by resorting to representations of successively higher precision.

But eventually, one will run out of computer memory, so that there is a

real limit to the accuracy of the representation.

Once we accept the limitations of rational approximation of irrational

numbers, we realize that the frequency set as represented on the computer

cannot be truly irrational.- It therefore becomes necessary to define a

sequence of approximations to incommensurability. This was done in the

previous papers(1 ,2 3 as follows:

A set of rational numbers gi (i = 1,2,...n) is approximately incommen-

surate to order M if

n
ill ri' i  0

for (3.4)

n

Z IriI ri + 1

with M an integer at our disposal. It should be clear from this definition

that incommensurability corresponds to M - m.

Henceforth we assume that the frequencies are approximately incommensurate

to order M.

If we are now dealing with rational numbers we may as well take them

to be integers. The correspondence between the rationals a and integers

W is simple to establish with the introduction of wL' the least common

integer multiple: wL is defined as the smallest integer such that

W - (. = 1,2,...n) (3.5)

are integers for all x.

The search curve with w integer, Eq. (3.1), is a closed curve In k
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space since for s outside the range (-7,l), uL must repeat a value from the

range (-Tr,1).

The total arc length of the closed search curve defined above will

increase with increasing M, the order of incommensurability. Thus, eq.

(3.,) serves to define a sequence of approkimate search curves which

j:ccessively become more nearly space filling as M - -.

We must balance the increased accuracy which one obtains by using a

longer search curve against the increasing computation time required to

evaluate the output functions for more of the k space.

2. Discrete Sampling

The search curve given in eq. (3.1) does not yet completely fix a

sample of parameter space which can be utilized in real problems because the

number of points on the search curve is uncountably infinite. We must

select a finite subset of these points in constructing an actual sample.

SucA a selection might be made in many possible ways. The simplest choice,

and the only one we have investigated to date, is to take a set of points

uniformly spaced along the closed search curve. We require that one of

these points lies at s = 0, since s = 0 is that point for which all para-

meters k take on their nominal values k(o).

The minimum number of points we must take in our sample can be related

to the maximum frequency wmax of the frequency set. This relation can be

derived by appeal to Nyquist's criterion for the evaluation of Fourier

coefficients (1 5 )  We want to evaluate all complex Fourier coefficients C

for the frequency range

0 c I j 2wmax (3.6)

There are a total of 4wmax + 1 such coefficients. By Nyquist's criterion,

at least 4wmax + 1 points must be taken on the search curve in order to be

able to evaluate this number of coefficients.
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It also is convenient to let the number of points be even. We there-

fore let N = 2r (> 4w + 2) be the number of uniformly spaced samplemax

points along the search curve, and define

= W(j-r) (j = 1,2,...2r) (3.7)
sa r

Furthermore, if we choose the frequencies wi to be odd integers it is

easy to show (Appendix 5) that the output function, as a function of s,

exhibits the symmetries

f(/2 + s) = f(Tr/2 - s) (3.8)

f(-2- s) = f(-r/2 +s)

so that the search variable's range may be restricted to -1r/2 c s & W/2.

Thus, it is sufficient to evaluate f(s1) only for those s which satisfy

-ar/2 :c sC 7r/2. (3.9)

The number of points which satisfy this criterion is r instead of 2r.*

If we choose 2r to be of the form 4q + 2 with q integer, i.e. divisible by

two but not by 4, then eq. (3.7) can be modified to

s W- 6 ; j r+l r+3 3r-3 3r-1 (3.10)

or, more conveniently,

7r 2z-rl1s . L , 19 I 2, .... r ( .1

* In references (1), (2), and (3), this symmetry was not invoked, so that

the number of sample points listed in these papers are all too large by

a factor of two.
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Aside from a lower limiting value* r k 2kmax + 1, fixed by the Nyquist

c~iterion, r can be assigned any value. However, large values of r are

nurnerically desirable for reasons of accuracy, although smaller values

are desirable for reasons of computing economy. To date, in practical

applications we have tended to allow considerations of economy to prevail,

and we usually have chosen r = 2wmax + 1.

It is important to realize that a more accurate evaluation of the

Fourier coefficients, made possible by choosing r to be large, may not

result in improved accuracy for the sensitivity coefficients. For, if

the search curve does not do an adequate job of covering the parameter

space, then increasing the accuracy of the s-space integration will not

improve the coverage of the parameter space. Thus, in addition to insuring

that r is sufficiently large to obtain an accurate s-space quadrature, we

must also investigate how to obtain an s-space curve which does a good job

of covering the entire parameter space.

3. Selection of Frequency Set

An adequate coverage of the parameter space is ensured by an appropriate

choice of the integer frequencies wi and the number of points 2r. Criteria

for such a choice were discussed in references (1) and (2) and sets of w,N

(N=2r) generated according to these criteria are presented there. Note

that once a set has been constructed for n parameters, this same set can be

used in all n parameter problems; i.e., frequency sets can be tabulated

once and for all.

* In reference (1), it is indicated that by appropriately choosing the

frequency set u it i possible to use a slightly smaller lower limit

value for r, r-2wmax - 7. The practical difference between these two

limits is small, and we prefer to use the larger value for purposes of

discussion. In actual calculations, we have used both values.
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For a given choice of frequency set _ and number of points 2r we

obtain an approximate sensitivity coefficient which we designate by an

asterisk. Thus, we can write

AL = A + C (w,2r) (3.12)

where A is the true Fourier coefficient, A* the calculated Fourier

coefficient and e is the error, which depends on w, 2r and the index L of

the coefficient to be calculated.

The analysis of reference (3) and parts of section 2 of this paper

address the difficult problem of how to determine what the error is under

given circumstances and how to minimize this error by properly choosing

2r and w. For the purpose of presentation of this implementation, we

assume that the error has been made sufficiently small to carry out a

meaningful sensitivity analysis.

4. Working Equations

The synmetries exhibited in eq. (3.8) simplify the computation of the

numerical Fourier coefficients. If we recall that the total number of

points 2r is chosen as 4q+2 with q an integer, the use of these symmetries

leads to (see Appendix VI)

A*= 0 (1. odd) (3.13a)

B* = 0 (1. even) (3.13b)

A* (2q+) I f + I (f+f o) (3.13c)
0 in J~-i q1-1+T (i. even)

, (2ql)' (f-fj) sin 7 (3.13d)

(. odd)
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where we nave set f(s.) = f. These formulae generate q+l unique cosine

coefficients and q unique sine coefficients. They form the working formulae

of our method, whereby we use the sample values f. for -q j - q to

,a.=r.te the Fourier coefficients.

We might particularly note that Eq. (3.13c) gives, for x = 0

q

A* = (2q+l)- 1 f. (3.14)0 .j= -q

identifying A* as the mean value of f(s). The variance of f is generated

by the formula

q
2 = (2q+l)-1  (f.Ao)2  (3.15)f ~j=-q j

It is worth pointing out that in any practical calculations, the

amount of computing needed for evaluating Fourier coefficients is a very

small part of the total computing. No significant benefit is thus gained

by attempting to introduce methods such as Fast Fourier Transforms (FFT)

into the analysis. There would in fact appear to be disadvantages in

using FFT in this application, since FFT works best when the numbers of

sample points is highly composite, e.g., a number of the form of 2n, whose

n is some integer, whereas our analysis gains in simplicity when the number

of points is not highly composite.
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5. A Useful Modification

Under certain circumstances, partial information may be available

concerning the dependence of an output function upon one or more of the

parameters. It may be possible to use this jnformation to improve the

numerical accuracy of the computation of the partial variances. By way

of example, suppose we knew that a particular output function f was an

even function of a particular parameter, say k1, i.e., f(-k,) = f(kl). In

such a case it is easy to establish that the Fourier fundamental of fre-

quency wl, and all odd harmonics, vanish identically. However, even harmonics

would not in general vanish. If we were to compute on the basis discussed

previously, half of the terms contributing to the partial sensitivity would

vanish, including the fundamental -- for which we might otherwise expect

higher numerical accuracy than for the even harmonics.

To circumvent this loss of accuracy, we can utilize the following

trick. We define a new parameter k, by

k = (3.16)

with a distribution function P'(k') related to Pl(kl) by

dkI  Pl A{
P{(k') = Pl(kl) I= -1I/kT) (3.17)

dki 2-AFT

We then utilize k' and Pj(kj), instead of k, and P1(k,), to determine G,

by Eq. (2.6). Finally, k' instead of kI is related to s via Eq. (3.1).

With this modification, the fundamental Fourier coefficient B. , and

in general all of the harmonic coefficients do not vanish, and we can

expect a more accurate evaluation of the partial variance.
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In a more general vein, suppose we have a priori knowledge, or suppose

we have qualitative reason to believe, that the output function f depends

upon k1 via an explicit function of kI. This is to sa-,, suppose f(k1 ) is

actually of the form F(h(kl)), with h(kl ) explicit. Then it is best to

pr-JLed by defining

kf h(k)

& dkI  Pl(k 1 ) Pl[h1(kf)]

Next utilize Pj(kj) to determine Gl by Eq. (2.6), and relate ki to s by

Eq. (3.1). After this, proceed along the lines previously discussed.

The use of these modifications can be expected to improve the numerical

accuracy of the sensitivity analysis.
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IV. Applications

To illustrate the application of our sensitivity analysis method, we

present in this section four different examples. The first three of these

examples have not been published previously, although two of them are

available through government document sources.

The applications to be'discussed are the following:

1. An Economic Model

2. A Chemical Laser Model

3. A Socioeconomic Model (World II)

4. A Chemical Reaction Model

In the first of these applications we are dealing with a model which uses

linear programming equations. The second and fourth examples deal with

models described by ordinary differential equations. The third application

involves a set of differential difference equations. Our ability to

achieve a successful sensitivity analysis for such different types of model

equations demonstrates the wide applicability of our technique of sensitivity

analysis.

One important feature should be noted which pervades the analysis of

all these examples. A study of the sensitivity coefficients reveals un-

expected but significant relations between parameters and output functions

which could not have been predicted from a more conventional ahalysis or a

purely intuitive approach. Sensitivity analysis thus provides information

which can lead to important insights into the structure of the models

used to represent complex systems.

1. AN ECONOMIC MODEL
C63

Frequent use is made of linear programming (LP) and related methodologies

in modeling the operation of complex, interacting systems. Generally

speaking, the form in which such problems are posed is one of seeking a
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constrained optimum to some objective function. Often the

objective function is the profit to be derived from a business,

and the constraints -relate to limitations on available re-

sources, manpower, capital, equipment, and/or demand. There

is an enormous literature covering this subject, of which we

only cite a few examplet.E7]  An interesting particular

example of application to a model of operation of a petroleum

refinery is described in a text by Wilde and Beightler. [8  The

structure of this model is such that it can be extended to

characterize an aggregated representation of the entire domestic

petroleum industry. In this model, a number of crude petroleum

producers supply crude oils, each of its own characteristic

chemical composition, to a number of refineries, each of

specific design. The different crudes each have a range of

possible products into which they may be converted, and each

refinery has a range of operability with respect to these

crudes. For each crude, the supply is limited in an absolute

sense by the pumping capacity of the supplier. For each re-

finery, the process capacity is limited by existing equipment

limitations. In addition to these physical constraints, there

are economic constraints. The crude suppliers may limit pro-

duction to below their physical capacity in order to obtain

political or economic advantages. The processors may limit

production for similar reasons. Furthermore, there may be

production limits due to consumers, who at any given time

have limitations upon their desire to use or capacity to store

products.
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All of these factors and others serve to de-

termine the rates of consumption of various crude petroleums,

the rates of production of various products, and the rates of

consumption of these products. The noney flow from consumer

to producer to supplier is likewise determined by these factors,

as are the profits of the producers and suppliers. Associated

with many of these factors are numerical values of parameters,

almost all of which are imprecisely known. Furthermore, these

parameters are not static but tend to fluctuate in time, both

in response to factors internal to the petroleum industry, and

to socioeconomic, political, and technical factors external

to the petroleum industry. These fluctuations make profit

optimization difficult, and make performance prediction for

the industry equally difficult.

The objectives of our study [6 1 were to develop a simple aggregated

model of industry economics, apply sensitivity analysis to the model, and to

see whether t'e resulting methodology might be useful as a means of determining

which parameters most influence costs, profits, and the development of shortages.

The mathematical structure of the model is as follows:

The symbol x ik denotes the daily national utilization of crude

petroleum available from source i and which is converted to

products by process k. The physical constraints of supply

can be written as
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SXik < bi (i = 1, 2, ... , N) (4.1)

where bi is the availability of type i crude. The constraints

of consumer demand are of the type *

N

a~J Xik xi bN (j = 1, 2, ... 1) (4.2)i=l k

The meaning of this relation is that production will not exceed
demand. Clearly this relation is not instantaneously true, but
rather represents a time average. That is, at any given instant,
production may well exceed demand, but over the long term, either
demand will increase (perhaps due to price adjustments) or pro-
duction will be reduced so as to restore a condition in which
the inequality (4L.2) is satisfied.
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i)

where ajik is the amount of product j produced from crude i
by process k, and b is the consumer demand for product j.

N+j

The production industry tries to operate so as to opti-

mize the daily profit P, which is given by

N
P- j yjsj- xipi, (4.3)

j=l i=l

where

x (4.4)

k

and where s. is the selling price of product j, yj is the daily

production of product j, xi is the daily production of crude i,

and pi is the cost of crude i. The latter cost includes the

cost of transportation to the refinery, and an allocated cost

of shipping to the consumer for each product manufactured from

crude i at the refinery. Production and utilization are re-

lated by

N

yj - a a aji k xik

i-k k

so that by substitution

i kc

We use in general one day as the unit of time, one barrel as
the unit of production, both of crudes and of products, and
one dollar as the unit of profit or loss.
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For a given set of prices si consumer demand will vary.

Although the finer details of thi5 variation may be obscure,

it is plausible to model this variation by the relations

b g 1 - (!ju) q j] (4,7

where gj is the limiting consumer demand as the price falls to

zero, and su is the limiting upper price at which demand

falls to zero. The exponent qj fixes the marginal demand,

i.e., the rate of change of demand with respect to price.

Small values of qj are referred to as indicating large

elasticity of demand, and large values of qj are referred to

as indicating small elasticity of demand. For essential goods,

such as many petroleum products, qj tends to be large (i.e.,

>> 1). The specific values of gj, sju and qj for a given pro-

duct must be regarded as experimental parameters which can

only be determined by observations of the response of the

market place to price changes. In addition, they are not truly

constants for any product, but display variations in time due

to changes in technology, social structure, political institu-

tions, public policies and other factors.

If we substitute Eq. (4.71) into Eq. (4 2), we are then

confronted with the problem of maximizing P as a function of

the prices s9 and the production levels xik, subject to the

Equation (4.7) is an approximate form which should not be in-
terpreted as literally valid over too broad a range of si .
If product i is an essential material, nations will go to
war at prices well below si - siu, if war promises to induce
a cheaper supply. Also, even if si were to approach zero,
demand does not become infinite because of limits in con-
sumer's storage capacity.
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nonlinear constraints, Eq. (4.2), and the linear constraints

Eq. (4.1). This problem is nonlinear and can be solved. How-

ever, we choose instead to introduce a simplification which re-

duces the problem to a linear one. To do this, we require

that all products be profitable, a condition we assure by re-

quiring all product prices to equal or exceed the price of the

most expensive crude, with a markup to account for processing

losses. To state this mathematically, we define

aik 1-ajik ,.8)
j

that is, aik is the fraction of each barrel of crude i lost

during production by process k. Then define a lower price

level s. by
max __i_

= i,k _ (j = 1, 2, ... , N) (4.9)
(l-aik)

Sale of any product at a price (per barrel) in excess of s

will be profitable.

Define then a parameter Ai for each product such that

its price is given by

si st + Xi(Siu-S). (i = 1, 2, ... , M) (.0)

Then if Xi = 0, we have si= s.; but if Xi =1 , we have

si - Siu' the limiting upper price at which sales of product

i would fall to zero.

This statement views the problem from the point of view of the
refiners. In reality, the problem is more complex, because
the producers interest is in maximizing his profit (which is
not expressed by Eq. (4.6)) subject to the constraints. The
producer's tool for attempting this is by variation of the
crude prices pi, analysis of which presents a more complex
problem than that we will consider here.
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Clearly then each Xi must fall into the range

0 < i< 1. We can refer to the X i's as the "markup para-

meters" for the products, and utilize the XiIs as equivalent

to a representation of the prices si.

We can develop an analysis in which the i's are varied

independently of the crude prices pj. If we then consider a

fixed set of XiIs, the prices and hence the consumer demand

constraints, Eq. (4:.2), will be determined via Eqs. (47) -

(.10). .Then for a fixed set of supply constraints, Eq. (441),

the profit optimization problem reduces to a linear program-

ming problem, namely that of maximizing P subject to the linear

constraints of Eqs. (4.1) and (4.2). The form of this problem

is essentially the same as that discussed by Wilde and

Beightler.

We now have defined a linear programming problem in

which producer's seek to maximize the total profit P, Eq. (C.6)

for given values of crude prices pj, crude availabilities bj,

product saturation demands gi' product cutoff prices siu,

product markup rates Xi and demand exponents qi" None of these

parameters are constants, but rather they all vary from time

to time in response to social, economic and psychological

forces. It is important to try to understand how the variabil-

ity of supply and price will influence costs, consumptions,

*It is implicit that st ! min . which effectively states that we consider

only the economic circumstinces in which producer prices are not set so high
as to prevent sales of any product because of the impact of Eq. (4.7).
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and shortages of refined products. Markup rates are subject

to fluctuation. Saturation demands, cutoff prices, and demand

exponents are only measurable approximately, and furthermore

fluctuate in time. Thus we have an LP problem with a large

number of parameters of uncertain value. The problem solu-

tion depends upon these parameter values. What we have done

is to treat these parameter uncertainties statistically, there-

by generating a set of linear programming problems. We have

performed a sensitivity analysis and determined whicb para-

meter uncertainties are most influential in causing varia-

bility in the following dependent variables: product con-

sumptions, crude consumptions, expenditures for crudes, ex-

penditures for products, profits and unfilled demands, i.e.,

shortages.

In the study that was performed, only a subset of the

parameters was taken to be uncertain: crude prices, product

markup rates and the demand exponent. It was furthermore

assumed that the demand exponent was the same for all pro-

ducts, i.e.,

q i - q i 1 . , M ) [ . 1

Other parameters were given constant values (i.e., no un-

certainty was assumed) based upon a brief analysis of data

on petroleum economics. The range of prices was such that

price and not physical supply constrained production.

To illustrate application of the methodology, an ag-

gregated model was chosen in which there are four types of
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crudes available. Of these, three could be processed only

in one way, and the fourth had two alternative processes

applicable to it. The crude production variables then are

labeled xll, x21, x31, x41, and x42. Products were put into

four classifications, termed "gasoline" (subscript = 1),

heating oil (subscript = 2), lubricating oil (subscript = 3),

and aviation fuel (subscript = 4). Available crude supplies,

product saturation demands and product cutoff prices are

given in Table 4.l. The coefficient matrix ajik is given in

Table 4.2.

The ranges .of the parameter values are shown in

Table 4.3. Because we did not have statistical data on the

probability distribution of these parameters, we in all cases

assumed a uniform distribution between the indicated lower

and upper limits. All of the parameter ranges were based

upon rough estimates derived from real data. The crude prices

quoted in Table 4.3 includes costs of transportation to the

refinery, costs of product transportation to the retail

market, and costs of processing. The sum of these costs is

about $5.00/barrel, so that the range of wellhead prices which

corresponds to Table 4.3 is about $7.00 to $11.00/barrel

($5.00 to $10.00/barrel for Type 3 crude).

With nine uncertain parameters, it is necessary to solve

323 linear program problems, using 323 parameter sets, as

According to reference 2, 630 problems must be solved, but the
two-fold symmetry discussed in Section IIlreduces this to 315
problems. The slightly higher value 323 is obtained from the
relation N = 2Nmax+l 2(161) + 1 = 323.
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TABLE 4.1

CONSTRAINTS AND PARAMETERS OF A TEST PROBLEM IN

PETROLEUM ECONOMICS

Available Crude Supplies

b 7.0 x 106 barrel/day
b2 = 7.0 x 106 barrel/day

b = 7.0 x 106 barrel/day

b= 7.0 x 10 6 barrel/day

b4 - 4.2 x 106 barrel/day

Product Saturation Demands

g = 9.8 x 106 barrel/day

g2 = 4.9 x 106 barrel/day

g3 = 6.0 x 105 barrel/day

94 = 2.1 x 10 barrel/day

S1  = $42.00/barrel

S2u = $46.00/barrel

S3 = $180.00/barrel

S4u = $60.00/barrel
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(TABLE 4.2

MATRIX OF REFINERY CAPACITY COEFFICIENTS aji k

j 11 21 31 41 42

1 0.6 0.5 0.4 0.6 0.5

2 0.2 0.3 0.4 0.3 0.1

3 0.0 0.0 0.0 0.0 0.2

4 0.1 0.1 0.1 0.0 0.1
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TABLE 4.3

RANGE OF VALUES OF UNCERTAIN PARAMETERS

Crude Prices

p1  $12.00/barrel to $17.00/barrel

P2  $12.00/barrel to $17.00/barrel

P3  $10.00/barrel to $15.00/barrel

P4  $12.00/barrel to $17.00/barrel

Product Markup Parameters

X 0.03 to 0.07
1

X2  0.03 to 0.07

Ax3  0.03 to 0.07

A 4  0.02 to 0.04

Product Markup Exponent

q 5.9 to 6.1
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defined by Eq. (3.1). The nine frequencies wi are given in

t Table I of reference (2).A computer program was written which

selects parameter sets and which then callsbn a standard linear

programming subroutine to solve a problem. The results are

then collected and transformed by the main program so as to

provide mean values, (f), variances c and partial variances-f
S* ('f.)Eqs. 3.2)andt3.15).The output functions studied were the

consumption rates for the individual crude petroleums, the

daily expenditures for all crudes, and for all products, the

daily profits of the refineries, the daily deliveries of the

products and the unfilled demands. Tables 4.4, 4.5, and 4.6

summarize the results.

In Table 4.4 we consider the variables xi (c.f., Eq.

(4.4)), the consumptions of the four crude petroleums. For

each crude, the table lists the available

supply. Also listed are the minimum and maximum consumption

as obtained from the sample of 323 calculations. In all

cases these vary from the maximum available down to zero.

The nominal consumptions correspond to the single choice

s - 0 for the search variable. For a uniform probability dis-

tribution this means that all variables have been taken as the average

value in their ranges of uncertainty (c.f., Table 4.3). The coefficient of

variation vf provides an alternative representation of the variance. By

definition the coefficient of variation, vf, of a random variable f is given

by

vf - Of/(f) (4-.12)
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TABLE 4.4

SENSITIVITY ANALYSIS OF CONSUMPTIONS OF CRUDE OILS,
DAILY EXPENDITURES, AND PROFIT RATES

Crude Consurptions (bbl/day)

Crude Type 1 Crude Type 2 Crude Type 3 Crude Type 4

Available Supply 7.0 x 106  7.0 x 106 7.0 x 106 4.2 x 106

Minimum Daily Consumpticn 0 0 0 0

Noninal Daily Consumption 7.0 x 10 6  1.3 x 106 7.0 x 106 3.0 x 106

Average Daily Consumption 4.7 x 106  3.3 x 106 6.1 x 106 3.6 x 106

Maximum Daily Consumption 7.0 x 106 7.0 x 10 6  7.0 x 106 4.2 x 106

Coefficient of Variaticn vf 0.686 0.921 0.249 0.202

Partial Variances S"

Price of Crude No. 1 (pl) 0.422 0.124 0.025 0.012

Price of Crude No. 2 (p2) 0.197 0.567 0.275 0.247

Price of Crude No. 3 (p3) 0.022 0.039 0.252 0.001

Price of Crude No. 4 (.4) 0.004 0.011 0.001 0.398
MarNp of Product 1 (A) 0.004 0.000 0.003 0.006

Markup of Product 2 (k2) 0.001 0.000 0.000 0.001

Markup of Product 3 (-3) 0.004 0.001 0.000 0.002

Markup of Product 4 (X4 ) 0.004 0.001 0.001 0.002

Product Markup Eqpnwit (q) 0.003 0.001 0.006 0.003
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The data in Table 4.4 indicates considerable variability in

consumption of the individual crudes as a consequence of

changes in the parameters. The partial variances indicate

the differing degree to which parameter uncertainties con-

tribute to consumption variability. We briefly summarize the

much longer discussion of results contained in the report by

Levine. [6] First, it is not surprising that consumption of Crude

Type 1 is more sensitive to variation in the price of Crude

Type 1 than it is in any other variable. The only other

variable of importance in this regard is the price of Crude

Type 2. Similarly, consumption of Crude Type 2 is most sensi-

tive to the cost of Crude Type 2. However, when we come to

Types 3 and 4 Crude the situation is different. Consumption

of Type 3 is more dependent upon price of Type 2 than on its

own price, and consumption of Type 4 is nearly as sensitive

to the price of Type 2 as it is to its own price. These

latter relations suggest a tendency for Type 2 to serve as a

substitute for Types 3 and 4 under certain conditions of

relative price.

In Table 4.5 we consider costs of crudes and of pro-

ducts, and refinery profits. The table clearly indicates

that the net expenditures for all crude petroleum is more

sensitive to the price of Type 3 Crude than to any other

parameters, somewhat less sensitive to the price of Type 2

Crude, and comparatively insensitive to the other parameters.

This conclusion with respect to Type 3 Crude is in accord
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TABLE 4 . 5

SENSITIVITY ANALYSIS OF EXPENDITURE RATES FOR
CRUDE PETROLEUMS, EXPENDITURE RATES FOR

REFINED PRODUCTS, AND REFINERY PROFITS
(Units: Dollars/Day)

Expenditures for Expenditures for
Crude Petroleum Refined Products Profit

Mninun $1.583 x 108 /day $2.301 x 108/day $2.864 x 10 7/day

Nominal 2.511 x 108 2.915 x 108 4.046 x 107

Average 2.358 x 108 3.027 x 108  6.695 x 107
8

Maxim= 2.827 x 108 3.488 x 10 1.119 x 108

Coefficient of Variation v 0.098 0.076 0.243

Partial Variances S*

Price of Crude NO. 1 0.070 0.043 0.071

Price of Crude No. 2 0.169 0.328 0.112

Price of Crude No. 3 0.375 0.059 0.287

Price of Crude No. 4 0.065 0.133 0.059

Markup of Product 1 (11) 0.006 0.040 0.030

Markup of Product 2 (X2 ) 0.001 0.009 0.010

Markup of Product 3 (X.3) 0.007 0.012 0.003

Markup of Product 4 (A4) 0.002 0.002 0.000

Product Markup Exponent (q) 0.006 0.006 0.001
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with the data in Table 4.4, which shows the daily average

consumption of Type 3 Crude to be higher than that of any

other crude, either on an absolute or a relative basis. Less

obvious is the ranking of the price of Type 2 Crude as the

second most important parameter, particularly when one notes

that its daily average consumption is the least of all of the

crudes. We also note from Table 4 .4 that the coefficient of

variation is higher for the consumption of Type 2 than it is

for any other crude, so that its average consumption repre-

sents the mean value of a widely dispersed variable.

The observation of the imoortance of the price of

Type 2 Crude as a parameter is a good illustration of the

ability of sensitivity analysis, in the form we have developed,

to locate obscure but significant relationships. By con-

trast, if we had only considered nominal parameter values, or

small variations about nominal parameter values, we would

have found the nominal daily consumption of Type 2 Crude to

be the least of all the crudes (see Table 4 .4), and we likely

would have concluded that its price did not importantly af-

fect net expenditures. Sensitivity analysis thus gives us

clues which, if pursued, can lead to deeper insights into

the structure of a complex system than we could obtain by

more conventional analysis.

In the same vein, Table 4.5 shows the price of Type 2 Crude to be

the most important parameter in the determination of expenditures for

refinery products, despite the fact that the average daily consumption

of this Crude is less than that of the cther Crudes.
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It is difficult to provide a simple explanation of the

high importance of Type 2 Crude, and the explanation must

lie in a complex interplay of the relative prices of the

crudes, the different product distributions available from

refining different crudes, and the differing product demands.

Nonetheless, the fact of this high importance emerges directly

from the analysis.

It is perhaps worth remarking on the almost complete

insensitivity of the dependent variables to the product mark-

ups and the markup exponent. This conclusion is in accord

with the real world observation that consumption of petroleum

products continues unabated even in the face of large price

increases; i.e., the price-demand relation is "highly in-

elastic", in the language of economics. Petroleum products

are simply too important to the consumer for their use to be

foregone in virtually all circumstances.

Table 4.6 combines our sensitivity analyses for product

delivery rates and for shortages. We can do this in one table

because shortage is defined as the algebraic difference be-

tween demand and delivery. Because this relation is linear,

In constructing Table 4.6, we can define "shortage" in two
alternate ways: the difference betweel actual demand at the
current price level and delivery; or by the difference between
saturation demand and delivery. In practical application to
products with an inelastic price demand curve, these two
definitions are virtually coincident. This is the situation
that applies in this study. For the sake of definiteness,
we define shortages relative to saturation demand; i.e.,
we use the second definition.
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TABLE 4.6

SENSITIVITY ANALYSIS OF PRODUCT DELIVERY RATES
AND UNFILLED DEMAND (SHORTAGES)

Product Deliveries and Shortages (Barrels)

1 2 3 4
Gasoline Heating Oil Lubricating Oil Aviation Fuel

Product Saturation Demand (Daily) 9.8 x 106 4.9 x 106 6.0 x 105 2.1 x 106

6 ~ 6
"Mn=n Daily Delivery 6.3 x 106 4.1 x 10 0 1.4 x 106

Miniun Daily Shortage 2.0 x 104 6.7 x 103 0 1.9 x 105

Naminal Daily Delivery 9.1 x 106 4.9 x 106 6.0 x 105 1.8 x 10 6

Naninal Daily Skirtage 6.6 x 105 1.5 x 104 0 2.7 x 105

Average Daily Delivery 8.7 x 106 4.9 x 106 5.9 x 10 5  1.7 x 106

Average Daily Shirtage 1.1 x 10 6  4.2 x 104 1.1 x 104 4.0 x 105

Maximun Daily Delivery 9.8 x 10 6  4.9 x 106  6.0 x 105 1.9 x 10 6

Maxirmm Daily Shortace 3.6 x 106  8.4 x 105  6.0 x 105  7.1 x 105

Coefficients of Variation v+

Daily Delivery 0.105 0.022 0.103 0.071

Daily Shortage 0.867 2.539 5.301 0.303

Partial Variances S*

Price of Crude No. 1 0.399 0.031 0.017 0.373

Price of Crude No. 2 0.076 0.023 0.072 0.002

Price of Crude No. 3 0.098 0.064 0.009 0.048

Price of Crude No. 4 0.000 0.007 0.079 0.128

Markup of Product 1 (A1) 0.008 0.001 0.002 0.004

Markup of Product 2 (X2) 0.001 0.003 0.001 0.003

Markup of Product 3 (A3) 0.007 0.008 0.018 0.009

Markup of Product 4 (X ) 0.004 0.002 0.000 0.002

Produt Markup Eponent 0.007 0.015 0.007 0.008
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the partial variances of the delivery for a particular product

will be the same as the partial variances for the shortages

of the same product.

With respect to aviation fuel, the results shown in

Table 4.6. indicate that the range of daily deliveries is small,

the average and nominal daily deliveries are nearly equal,

and the coefficient of variation is small. The price of

Type 1 Crude is the most important parameter and the price

of Type. 4 Crude is the next most important parameter. The

rationale for the latter observation is difficult to establish:

since all of the Crudes can be used to produce aviation fuel

in the same relative proportions, we might expect that the para-

metric importance would be in the same order as the average daily

consumption, butcomparison of Tables 4.4 and 4.6 showS this not-to be the cast..

Thuswe again see an example where the numerical results of a sensi-

tivity analysis do not conform to those derived by simple reasoning.

With respect to gasoline, a more complex situation

arises: there is a moderately large spread of delivery rates,

and a corresponding spread of shortages which yields at the

upper extreme shortages which are a large fraction (2 37 per-

cent) of demand. The only parameter of major significance

influencing this variability is the price of Type 1 Crude,

despite the fact that it ranks second in average daily con-

sumption.

With respect to heating oil, still another situation

arises. The range of daily delivery is small (as reflected



in a small coefficient of variation), but the coefficient of

variation of the daily shortage is large. The latter fact

stems from the evaluation of shortage as the small difference

between two large numbers, demand and delivery . On an

absolute basis, the maximum shortage is 17 percent of satura-

tion demand, but the average shortage is less than 1 percent

of saturation demand. For this case, the sensitivity analysis

does not clearly identify a parameter of maximum importance,

and the sum of the partial variances in Table 4.6 is only

0.151, much less than the maximum possible value of unity.

This means that the higher order partial variances alj ajk'

etc. (c.f., Eqs. (2.28b) and (2.28c)) are important in this

case.. Although we could calculate these higher order partial

variances, we have chosen not to do so, since the relatively

low level of shortages renders immaterial such a complicated

analysis.

The situation for lubricating oil is similar to that

for heating oil, except that the range of daily shortages is

even broader, being at the one extreme zero and at the other

equal to the product saturation demand. The sum of the par-

tial variance3 in Table 4.6 is 0.205, again well below unity

in value. Here, evaluation of higher order partial variances

would be useful, so as to help identify those parameter combi-

nations which induce large shortages.

This identification can also be made by direct examination of
the 323 sample calculations, which would be a tedious process..
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2. A CHEMICAL LASER MODEL [93

The hydrogen fluoride chemical laser is a chemical

system consisting initially of a mixture of molecular hydro-

gen, a2 , molecular fluorine, F2 , and an inert diluent, e.g.,

argon. At time t = 0 flashlamp irradiation dissociates -

some of the F2 into F atoms. Chain reactions then bi-

gin- which leads to the conversion of the hydrogen and fluorine

into hydrogen fluoride, HF. Because of the high chemical

energy release the HF molecules produced are in comparatively

high vibrational quantum states. If the system is placed be-

tween two mirrors, the vibrational decay will lead to lasing

action on the infrared vibration-rotation transitions of the

HF molecule. Theoretical descriptions of the system have

been provided by various authors. 10 ' .1.12] We have performed a

sensitivity analysis on - the model of Kerber, Emanuel,

and Whittier.[IO)

The model studied described the chemical evolution of

the system in terms of a set of 68 reversible chemical re-

actions between the following species: H atoms, Ar atoms,

F atoms, H2 (v) molecules, F2 molecules, HF(v*), where v and

v' indicate the vibrational quantum states of H2 and HF,

respectively. The model considers the ranges of values

0 < v < 2 and 0 < v' < 8, so that a total of 16 chemical

species are considered. The system is assumed to be spatially

homogeneous. Over time-scales of interest it operates adi-

abatically and at constant volume. Because of the chemical
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energy release the temperature is not constant. Except for

the Ar atoms, whose number is constant in time, the other

15 chemical species have concentrations which vary in time.

Including the temperature variation, the system is described

by 16 coupled time-dependent equations, the temperature equa-

tion being derived from considerations of energy conservation.

For the temperature and for the masses (or number of moles).

of all species except HF(v' ) the time dependent equation is

an ordinary differential equation. The equations for the

Hr(vA) mclecules are of one of two alternate forms. If lasing

is not taking place on any transition involving the vibra-

tional level v', then the equation for that level is an

ordinary differential equation, namely an equation of chemical

evolution. If lasing is occurring which involves the vibra-

tional level vo and an adjacent level v' + 1, then an alge-

braic relation (the so-called "gain equation") replaces one

of the chemical differential equations for the populations of

state v' and state vo + 1. Thus the system is described in

terms of a set of equations in which the equations themselves

change form in time. It is not known a priori which equations

are applicable at a given time, and auxiliary tests are re-

quired in order to determine when changes occur in the equa-

tion system.

An important parameter of the system is the "threshold

gain",whose value depends upon the reflectivity of the laser

mirrors and the spacing between these mirrors. The larger

.1 -0 now



the value of this threshold gain, the less the system is able

to lase. For sufficiently high threshold gain, lasing is com-

pletely suppressed. In this case, the equations describing

the system become completely "chemical" in form, and consist

entirely of coupled ordinary differential equations. The

boundary condition on these equations are fixed by the initial

chemical composition of the system, the initial pressure and

temperature, and (importantly) by the number of fluorine atoms

produced by the initiating flashlamp discharge.

The case of complete suppression of lasing action,

which is usually termed the "zero-power" case, is therefore

relatively simple to treat, and it is also of considerable

interest. In particular, it is possible to study the timewise

variation of the populations of the HF(v) levels. From this

information one can calculate the gains between adjacent

levels and determine the times at which lasing would have

been initiated had the threshold gain been adjusted to some

specific value.

The model is characterized by a very large number of

parameters, virtually all of which are known with poor pre-

cision. The most significant of these are the 68 rate co-

efficients, one per reaction, and the initial conditions of

the systems. Preliminary study of the system suggests that

For each reaction there are two rate coefficients, one for-
ward and one reverse. However, appeal to equilibrium con-
siderations shows that only one of the two is independent,
and that the uncertainty in one stands in a fixed relation to
the uncertainty in the other. Thus, we can speak of there
being one (independent) rate coefficient per reaction.
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FI
energy release the temperature is not constant. Except for

the Ar atoms, whose number is constant in time, the other

15 chemical species have concentrations which vary in time.

Including the temperature variation, the system is described

by 16 coupled time-dependent equations, the temperature equa-

tion being derived from considerations of energy conservation.

For the temperature and for the masses (or number of moles).

of all species except HF(v') the time dependent equation is

an ordinary differential equation. The equations for the

HF(vA) molecules are of one of two alternate forms. If lasing

is not taking place on any transition involving the vibra-

tional level v', then the equation for that level is an

ordinary differential equation, namely an equation of chemical

evolution. If lasing is occurring which involves the vibra-

tional level v' and an adjacent level v' + 1, then an alge-

braic relation (the so-called "gain equation") replaces one

of the chemical differential equations for the populations of

state vo and state v' + 1. Thus the system is described in

terms of a set of equations in which the equations themselves

change form in time. It is not known a priori which equations

are applicable at a given time, and auxiliary tests are re-

quired in order to determine when changes occur in the equa-

tion system.

An important parameter of the system is the "threshold

gain",whose value depends upon the reflectivity of the laser

mirrors and the spacing between these mirrors. The larger
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the value of this threshold gain, the less the system is able

to lase. For sufficiently high threshold gain, lasing is com-

pletely suppressed. In this case, the equations describing

the system become completely "chemical" in form, and consist

entirely of coupled ordinary differential equations. The

boundary condition on these equations are fixed by the initial

chemical composition of the system, the initial pressure and

temperature, and (importantly) by the number of fluorine atoms

produced by the initiating flashlamp discharge.

The case of complete suppression of lasing action,

which is usually termed the "zero-power" case, is therefore

relatively simple to treat, and it is also of considerable

interest. In particular, it is possible to study the timewise

variation of the populations of the HF(v') levels. From this

information one can calculate the gains between adjacent

levels and determine the times at which lasing would have

been initiated had the threshold gain been adjusted to some

specific value.

The model is characterized by a very large number of

parameters, virtually all of which are known with poor pre-

cision. The most significant of these are the 68 rate co-
*

efficients, one per reaction, and the initial conditions of

the systems. Preliminary study of the system suggests that

For each reaction there are two rate coefficients, one for-
ward and one reverse. However, appeal to equilibrium con-
siderations shows that only one of the two is independent,
and that the uncertainty in one stands in a fixed relation to
the uncertainty in the other. Thus, we can speak of there
being one (independent) rate coefficient per reaction.

"moo"



only 13 of the 68 rate constants need- be studied by sensi-

tivity analysis, and that of the initial conditions, only

the initial concentrations of F atoms need be studied. We

therefore limited the sensitivity analysis to 14 parameters

of the system.

The 13 rate constants which-we used in our sensitivity analysis are

detailfd in Table 4 .7. The other rate constants were assumed to stand

in certain fixed relations to those listed. The basis for

this premise has been discussed by Cohen.C
13]

The rate coefficients listed in Table 4.7_are temDerature-.

dependent. Broadly speaking, the

values in Table 4.7 are more reliable near 3000K (where they

have been studied experimentally) than at higher temperatures,

where numerical evaluation is based upon extrapolation of

measurements beyond the range of experimental study. In

principle, sensitivity analysis could study the separate in-

fluences of uncertainties in the absolute value of the rate

coefficients at a fixed temperature within the experimental

range (i.e., a pre-exponential or temperature independent

factor), and the influence of uncertainties in the temperature

dependent part of the rate constant (i.e., the activation

energy). Such a separation into temperature independent and

temperature dependent uncertainties was not undertaken in the

referenced study. Instead, at the suggestion of N. Cohen
[141
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SOME RATE COEFFICIENTS OF THE HF CHEMICAL LASERE93'(10 ]

Index Reaction Rate Coefficient*

1 H+ H +M 2 - H2 (0) +M 2  1018 T-1 .0

2 F2 + M4 : F + F +M 4  5.0 x 1013 exp (-17765/T)

3 EF (v) + m4 H + F + M4 1.2 x 119 T-1 .0 mcp (-68334/T)

7 F + H2 (0) 'HF(0) + H 9.0 x 1012 exp (-805/T)

11 HF(4) + H H2 (0) + F 1.0 x 01 2 T0 67

14 H + F2  F(O) + F 6.0 x 10 exp (-1208/T)

21 H2(1) + M ( H 2.5 x 10-4 T4.3

23 HF(1) +(o) + 9.0 x 10 8 T1.3

31 !H(1) + M6  H"(0) + M6 5.0 x 107 T. 3 + 1.0 x 1016 71-43

39 HF(1) + MS I'(0) + 1.3 x 10-2 T3.6

47 2HF (1) -" F(0) + HF (2) 4.0 x 10 T2 2

54 HF(1) + HF(2) 4 HF (0) + BF(3) 1.3 x 103 T2.8

60 HF(1) + HF(3) 0 HF(0) + HF(4) 6.0 x 10-2 T3 .9

Noninal values; Units: T in OK, time in sec, volume in o 3, mass in moles.

The Hi'S denote catalytic species

= H, F, Ar, HF (0), ... , ()
M2 = 20*H, F, Ar, HF(0), ..., IF(8), 2.S*H2 (0), 2.5*H2 (1),

2.5*H2 (2), F2

M3 =F

14 - H, F, Ar, -E'(O), ... , HF(8), H2 (0), H2(1), K2(2), F2
M5 - H, A), ( 52(1), H2(2), F2
M6  - HF(0)," ..., P (8)

Coefficients such as "20*" in the list of catalytic species denote that the

species concentration is weighted by this factor in computing the reaction r

'.r- -
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the rate coefficients were assumed to be undertain to within a-

multiplicative factor or 5, .independent of temperature.

At every temperature each rate coefficient ki was assumed-

to have a uniform probability distribution of its logarithm

within bounds given by

log k(O ) - log 5 < log ki < log k i + log 5. (4.13)

(0)where ki is the nominal value of ki, i.e., the value tabulated

in Table 4.7. We note in passing that for such a distribution,

the transformation function Gi of Eq. (3.1) is given by
2

Gi (x) = . Sin- (x) (4.14)

where Sin 1. is the principal value of the inverse sine function.

The number of fluorine atoms produced at time t = 0 by

flashlamp discharge is similarly uncertain. by about a factor

of two [15] i.e.. for this parameter log 5 is replaced by

log 2 in Eq. (4.13).

The differential equation system which describes the

laser at zero power was programmed and run. Initial condi-

tions of temperature and composition were as indicated in

Table 41.8.

The laser model was integrated from zero time out to

a real time of 4.0 microseconds. With fourteen parameters

it was necessary to carry out 907 such integrations. Data

This is based on the rule N = 2 wmax - 7 mentioned previously,
in Section III and not on the -rule N = 2w + 1.
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TABLE 4.8

INITIAL CONDITIONS FOR LASER STUDY

Temperature 3000K

Species Concentrations

Ar (inert diluent) 4;704 x 10- 5 mole cm
-3

H2 (0) 9.407 x 10-7 mole cm
3

H2() 1.119 x 10-15 mole cm
3

HH2 (2) 4.321 x 10-24 mole cm "3

H 0.0 mole cm3

HF(vo) (v" = 0 to 8) 0.0 mole cm-

F + 2F2  1.975 x 10-6 mole cm- 3

F (nominal value)* 4.704 x 10-8 mole cm
"3

F2 (nominal value) 1.928 x 10- 6 mole cm
3

* Actual initial value ranges from -50% to 100% of

tabulated value (see text).

** Actual initial value dependent upon initial F atom

concentration, such that sum F + 2F2 is tabulated

value.
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on populations of vibrational states, chemical concentrations,

temperature, and other variables was stored at each 100 nano-

second real time interval. -From the populations N(v) of

adjacent vibrational levels of HF, it is simple to calculate

the gains. The gain a(v,J) for the transition HF(v+l, J-1)

HF(v,J) (J is the rotational quantum number of the lower

vibrational state) is expressed by

hN A 12J+1
a(v,J) = W (v,J) (v,J)B(v,J) N(v+l,J-l)-N(v,J)

(4-.15)

where h is Planck's constant, NA is Avogadro's number, Wc

is the wavenumber of the transition, O(v,J) is the line pro-

file at line center, B (v,J) is the Einstein coefficient for

absorption, and N(v,J) is the population of the v,J rotation-

vibration level of HF. The assumption of thermal equilibrium

of the rotational states implies that N(v,J) satisfies

N(v,J) = N(v) (2J+l)exp(-hCEj/kT)/QV (T) 4.16)

where k is Boltzmann's constant, T is the absolute temperature

(assumed the same for rotation and translation) EJiste

rotational energy of the v,J level relative to the vIO level,

and Q0 (T) is the rotational partition function;v
QV (T) - (2J+l) exp (-hcE /kT). - { 4.17)

J

In evaluating the gain as a function of time it is necessary

to search over the rotational quantum number J to find that

The Doppler profile was assumed in the model.



J value which maximizes a(v,J) as a function of time. The

reason for this is that only one such level can lase at any

given time within each vibrational band, and it is the level

for which a(v,J) is maximum that actually lases. This J

value can shift in time. The search procedure is simple and

straightforward.

We will describe the results of the sensitivity

analysis for the v = 2-1, v = 3-2, and v = 4-3 bands. The

report by Levine [-9] analyzed many other variables in addition

to these three, and the reader can refer to this report for

additional discussion. The three variables we will describe

here suffice to illustrate the technique of application of

sensitivity analysis.

Figure -K shows the zero-power gain as a function of

time for the v = 2-1, v = 3-2, and v'= 4-3 transitions. Both

the nominal values and the mean values (averaged over the dis-

tribution of all parameters) are shown. Except at times

less than 1 usec following initiation the mean and nominal

values differ considerably, both for the v = 2-1 and v = 3-2

transition. For the v = 4-3 transition, the mean and nominal

values are not in good agreement even at times as short as

0.2 usec. From this we can infer that the variance of these

transitions will be large, which is confirmed in Figure 5 ,

where we plot the coefficients of variation. From these two

figures we see that the predictive ability of the model is

poor as a consequence of the parameter uncertainties.

7e'

* -- *-* - . . - ~ .. . 0 ... .



The question as to which parameter uncertainties cause this

high variance is answered graphically in Figures 6. 7, '-

and 8. These three figures display the partial variances

for the v = 2-1, v = 3-2, and v = 4-3 gains, respectively.

Reference to Figure 6 shows that for the v = 2-1

transition the variance at early times is due mainly to un-

certainties in the initial F atom concentration IF]0 and the

rate coefficient for process F + H2 (O) ' HF(O) + H. Since

the coefficients for the process F + H2 (O) 4 HF(v) + H

(v = 1, 2, 3) are proportional to this rate (c.f., References

9/andl 4') this is equivalent to stating that calculation of the

gain at early times is sensitive to the rates at which re-

action of F with H2 (O) populates the excited levels, as we

should anticipate.

At longer times the sensitivity coefficient for the

collisional deactivation process HF(v) + HF(v') -4HF(v-l) + HF(v )

becomes the dominant cause for uncertainty in the computed

values of the gains. At still longer times the uncertainties

in the rate coefficient for the process H + F2 :HF(O) + F,

and in the initial concentration of F atoms, become the dominant

sources of uncertainty. The reason for the importance of the

latter parameter at late times is related to the fact that the

laser at zero-power operates adiabatically.,4 The reason for

the importance of the former parameter at late times is that

the collection of reactions H + F2 '" HF(v) + F tends to

The curves only show those partial variances which are large.
Parameters whose partial variances are negligible are not shown,
so as to avoid cluttering the figures.
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repopulate the excited levels HF(v) (v > 1) following their

initial depopulation. The rate coefficients for this process

with v > 1 are taken to be proportional to the rate coefficient

for this process with v = 0, c.f., References 9 andl3:).

Reference to Figure 7_ shows that the variance in the

computed zero-power gain at the v = 3-2 transition is due to

substantially the same reasons as in the case v = 2-1, with

small additional influences. The latter correspond to the

processes HF(v) + H F + H2 (O) (v = 4, 5, 6) and 2HF(vl :
HF(v-1) + HF(v+l). The former process, while it does not

directly involve the states HF(2) and HF(3), nonetheless in-

fluences these states indirectly, since, e.g., removal of

molecules from HF(4) by collision with H eliminates molecules

in HF(4) as a source of molecules in HF(3) via the process

HF(4) + HF(v) - EF(3) + HF(v).

Reference to Figure 8- shows a feature unique to the

zero-power gain on the v = 4-3 transition. The process

HF(v) + H H2 (O) + F (v = 4, 5, 6) is the dominant cause of

variance in the computed gain at times beyond 1.0 Usec.

Furthermore, as can be seen in Figure 5, _ the variance for

the gain on this transition is larger than that for the

other transitions. It is striking also to note that the

computed gain on this transition is very small (see Figure

4)1. a fact which can be related to a very low population

for the v = 4 level. [ 9 ' 0j It thus becomes possible to sug-

gest, as a consequence of the sensitivity analysis, that the

t ........ I



anomalously small computed gain cn the v = 4-3 transition

may be due to too large a_nominal value for the rate coefflclent of the process

HF(4) + H 4 H2 (O) + F. For further discussion of this

point, we refer the reader to the report by Levine.(9]

In concluding this example, it is worth noting that

the results of the sensitivity analysis show that the pre-

dictions of the model are sensitive only to five of the

14 parameters studied. Thus we find that the large un-

certainties in the remaining nine parameters do not influence

the predictions. In view of this, we can conclude that for

all practical purposes those processes for which the sensi-

tivity coefficient is small can be omitted from the model

entirely. That is to say, a simplified five reaction model

would suffice to describe the HF laser at zero power.
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3. A SOCIOECONOMIC MODEL (WORLD II)

Forrester has written extensively on the use of mathe-

matical models as descriptions of industrial and social pro-

cesses. [1 6] World II[1 7 is an example of a model of this

type. It consists of five coupled differential (or dif-

ference) equations describing the time dependence of five

variables: population, natural resources, capital invest-

ment, pollution, and the fraction of capital which is in

agriculture. The model utilizes a large number of parametric

relations to relate the time rates of change of the dependent

variables to current values of these variables. Many of

these relations consist of tabulations, so that each table

entry constitutes a parameter. As such, the model contains

several hundred parameters, each of which contains to some

extent biases of the model's author. In any event, none of

these parameters are precisely known, and these parametric

Typically the models developed by Forrester consist of

coupled difference equations in a set of dependent variables
with time as independent variable. The change Xn - Xn-I in
a typical dependent variable over one time interval
At = nit - (n-l)&t is usually expressed as a forward dif-
ference, i.e., xn - Xn_ 1 is assumed to depend upon the set
of dependent variables {xn-l}, plus in some case independent
driving functions, all evaluated at time t = (n-l)At. In
the limit At - 0 the system of equations would reduce to a
system of ordinary differential equations. As compared to
the differential equations so derived, Forrester's difference
equations can be viewed as being the forward Euler difference
approximation to the diflerential equation. As such, the
possibility arises that the difference equations may be
relatively unstable compared to the differential equations,
and that, therefore, the difference form may generate solu-
tions which depend sensitively upon the time step employed.
To our knowledge, no specific stability analysis of Forrester's
World II model has been performed, but the numerical solu-
tions show no evidence of artificial mathematical instabilities
induced by the difference scheme used.



uncertainties will influence the prediction of the model. We

selected a small subset, nine in number,of the parameters

and examined the sensitivity of the model to assigned uncer-

tainties in these parameters. The parameters we studied

are listed in Table 4.9, along with the "identifiers" used

in the original study.

The first four parameters listed in Table 4.9 are

annual rates of growth or decay. The last of these para-

meters, CIDN, basically is identical to the rate of deprecia-

tion of capital. The fifth parameter, "normal pollution", is

a multiplier which gives the rate of generation of pollution

per unit of population, the unit of pollution being given

by definition in terms of a standard unit defined so that the

per capita global pollution in 1970 is one unit.

The sixth parameter, BETA, is related to the rate of

absorption of pollution, i.e., its conversion to harmless

form, by the global ecosystem. Forrester assumes a quasilinear

relation between absorption time and level of pollution (see

Figure 3-15, p. 57, of Reference 17). For such a case, the

rate of change of pollution p, would be given by

dp/dt = -p/a(p) + source terms (4.19)

where the characteristic decay time a is itself a function of

p. We have scaled Forrester's estimate of a(p) by a constant

factor 8, i.e., we use

dp/dt = -p/Sa(p) + source terms, (4.20)



TABLE 4 . 9

PARAMETERS OF WORLD II MODEL STUDIED BY SENSITIVITY ANALYSIS

Identities Description Numinal Value

1. BFV Normal birth rate 0.04 year I-l

2. DFN Nonnal death rate 0.028 year-1

3. CIGN Nonnal capital investment 0.05 year-l
growth rate

4. CIDN Normal capital investment 0. 025 year!-
decay rate

5. POLN Nozmal pollution 1.0

6. BETA* Scale factor for pollution 1.0
absorption time

7. CIAF Capital fraction in agriculture 15.0 years

8. C* Coefficient of CFIFR in rate of 1.0
change of CIAF (see text)

9. NRI Initial inventory of natural 9.0 X 101
resources

Not defined in original World II model. See text for explanation.
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and our sixth parameter is this scale factor 8 (BETA).

Values of BETA in excess of unity correspond to ecosystem

recovery slower than that assumed by Forrester; values of

BETA less than unity correspond to ecosystem recovery

faster than that assumed by Forrester.

The seventh parameter is a relaxation time which fixes

the rate at which capital investment can be shifted into or

out of agriculture in response to the variations in demand

for agricultural capital (e.g., tractors, harvesting equip-

ment), this demand also being dependent upon the instantaneous

supply-demand relation for food.

The eighth parameter is similar in character to the

sixth. Forrester assumes that the rate of change of the

fraction of capital investment devoted to agriculture is re-

lated to the per capita food supply (see Figure 3.13, p. 59

of Reference 17), with larger food availability leading to

decreasing rate of capital investment in agriculture, and

vice versa. His assumed relation is roughly exponential,

with all new capital invested in agriculture in the limit

of zero food availability; with 30 percent of new capital de-

voted to agriculture when the per capita food availability

(the "food ratio") is at a "satisfactory" level (unity by

definition), and 9_ percent of new capital when food supply

is twice per capita need. We can express this relation as

f = exp (-1.204 r) where f is the capital fraction (CIAF)

indicated by the food ratio (CFIFR) and r is the food ratio.
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In our analysis, we generalize this relation to read

f = Cexp(-l.204r), so that values of C in excess of unity

correspond to increasing the rate at which new capital is

switched into agriculture in response to food shortages,

as compared to the standard rate assumed by Forrester, and

values of C less than unity correspond to decreasing this

rate as compared to Forrester's assumption.

The last parameter is the inventory of natural re-

sources in the initial year of the model, in arbitrary re-

source units. The nominal value of this inventory is what

is presumed available in the year 1900, with a per capita

need of 1 unit/year. This supply then would suffice for

250 years for a (fixed) population of 3.6 x 109 individuals.

A major criticism of World II has been that its re-

source inventory is finite and irreplacable. In such a

case this initial value must become the dominant parameter

at sufficiently long times. Rather than try to introduce

renewable resources, technological innovation, or other

mitigating concepts, we have chosen to analyze World II as

is. Therefore, we will inevitably be confronted with a

world in which everyone dies in the long term. At issue,

however, is the question of the reliability of World II on

a relative basis in the intervening time.

At first sight it might appear that when C > 1 and the
shortage of food is acute, the system will "try" to devote
more than 100 percent of all new capital to agriculture.
Needless to say, it cannot succeed in doing so, as careful
analysis shows. But it does mean that
net rate of response to "starvation" is better than in the
standard case.



One auxiliary variable is important. Forrester de-

fines a "quality-of-life" function as the product of four

factors, each dependent upon one of the dependent variables:

population, food, capital investment per capita (termed

"material"), and pollution. There are several arbitrary

aspects to his definition, such that the numerical value

is best viewed only as qualitative and not quantitative.

Nonetheless, to lay stress on the difficulty of predicting

qualify of life, we have treated this variable as quantita-

tive, and have subjected its predicted values to sensitivity

analysis.

We obtained a computer program for World II, and

applied our method. Except for the nine parameters listed

in Table 4.9, all parameters were given the values used by

Forrester for his "base case". For the nine parameters of

Table 4.9, the nominal values, as given in the table, cor-

respond to Forrester's base case. We attributed to each of

* We are tempted to suggest that a Delphi procedure might pro-
vide the most rational way of determining a consensus defini-
tion of quality-of-life.

We are indebted to Professor W. E. Schiesser, Department of
Chemical Engineering, Lehigh University, for supplying us
with this program. This program uses second order forward
Runge-Kutta integration instead of first order forward
Euler differencing. It is possible to prove that this
Runge-Kutta method has wider stability bounds than the for-
ward Euler method, so that with equal or smaller time-steps
than those used by Forrester, we are assured that our solu-
tions display the same stability character as Forrester's
original equations. We in fact used smaller time-
steps, so that numerically we always generated solutions
with the same stability characteristics as in the original
work.



these nine parameters an uncertainty of + 20 percent, with

a uniform distribution of probability within this interval.

In view of the difficulty in precisely ascertaining values

for these parameters, it appears to us that attribution of a

+20 percent error understates the real situation.

The output (dependent) variables we analyzed were

population, pollution, capital investment, natural resources,

and quality of life. In this paper we only discuss the

first and last of these.

Figures §-- and _10. show our results for population.

In Figure 9 j we see that the nominal and mean values of

population are virtually coincident until about Year 1976

(they also coincide fairly well with real data) but that

beginning about Year 1976 a divergence sets in. This diver-

gence reaches an (absolute) maximum about Year 2040, at which

time the mean value is about one billion (U 10 ) persons

lower than the nominal value. The corresponding value of

the coefficient of variation also is shown; it reaches a

maximum value of about 0.4 in Year 2040.

The sensitivity coefficients for population are shown

in Figure 10 i The graph exhibits only four of the nine para-

meters because for the other five the coefficients are very

We see here a remarkable example of the well-known fact
that models do a better job of confirming the past than of
predicting the future!
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small, and effectively zero. It is interesting to note that

in early years, i.e., pre 1930, the birth and death rates,

which are direct influences of population, are the dominant

parametric influence in population. However, at later times,
the normal capital investment growth rate emerges as the most

important parameter, and the variance in population prediction

is dominated by the uncertainty in this investment rate.

The peculiar effect, near Year 2010, where nearly all

of the sensitivity coefficients fall to zero arises from an

inadequacy in our procedure as applied to this one example;

at the time we did this calculation (mid 1974) we were not

yet aware of the significance of the harmonics in the defini-

tion of the sensitivity coefficients, so that we were com-

puting coefficients by calculating the fundamental terms of

Eq. (2.25) only. In such a calculation, it is possible to

*lose" some of the variance when the coefficient of the

Fourier fundamental undergoes a change -in sign (c.f., Se~ton II

for a discussion of this possibility). This circumstance

applies for population in Year 2010. It would be interesting

to repeat our calculation using the fuller definition, Eq.

(2.25),but we have not had the opportunity to do so. None-

theless, it seems clear to us that the uncertainty in the

normal capital investment growth rate is the key parameter

which leads to variance in the predicted population.

Figures 11 !and 12 show our analysis of the auxiliary

variable quality of life. In Figure 12 we see that the



mean and nominal values of this variable are virtually co-

incident until about Year 2005, but that following this year

the mean value rises to a dramatic new level whereas the

nominal value continues to decay. After about Year 2045

the mean value rapidly decays. The coefficient of variation

is small until Year 2005, but then rises dramatically over

the next 15 years, following which it too decays. The long

term decay (i.e., after Year 2050) of the mean and nominal-

values and the coefficient of variation all are traceable

to the finite resource inventory in the model. The influence

of the latter only is beginning to appear at about Year 2070,

but is clear enough that with an inventory capable of sus-

taining 3.6 x 109 people for 250 years, and populations as

exhibited in Figure 9, depletion of resources is going to

be of overriding significance in the model by Year 2150 =

1900 + 250, i.e., just off the figure at the right.

It is striking to see tnat the model is more ... ... ... ..

likely to lead to a prediction of a "golden age" in the .

period 2005-2050 than it is to predict a continuing decay,

if an accounting is made of parameter uncertainties.

Figure 1Z shows the sensitivity coefficients for the

quality of life: birth and death rate are the important

parameters prior to 2005; however, since the variance is

small in these years, it is not too significant to inquire

as to the causes of the variance. After Year 2020, the

normal capital investment growth rate becomes the most



important single parameter, although it by no means dominates

quality of life to the degree it dominates population. Still

later in time, there is a transient period of importance for

the normal capital investment decay rate, presumably due to

the fact that with diminishing resources and hence limited

capability for new capital formation, it is the rate of dis-

appearance of capital to which quality of life is most sensi-

tive.

To summarize then, the conclusions we have reached in our brief

study of Forrester's model are:

1. Uncertainties as to the nominal rate of capital in-

vestment is the dominant parameter which renders pre-

dictions of World II unreliable, at least over the

next 100 years.

2. To the extent to which the resource inventory is truly

finite, the initial extent. of this resource ultimately

becomes the key parameter at some future point in time.

3. The model is not capable of predicting "quality of

life" to any meaningful degree after about Year 2005.

More recently, Meadows et al. (18 ) have developed World 3, an extended

and enlarged version of World 2, with many more variables, parameters, and

equations. They subject this model to a number of linear sensitivity analyses,

on the basis of which they determine the model's qualitative reliability. A

much more appropriate test of the model's reliability would be via a nonlinear

method such as the one discussed in this paper.
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4. A CHEMICAL REACTIJ MODEL

(19)In a recent paper 1 , Boni and Penner have successfully applied our

method of sensitivity analysis to a study of methane oxidation kinetics.

Their model consisted of a set of 23 co-Dled rate equations involving 23

parameters, i.e. rate coefficients. These paratmeters were varied over a

t50% range of uncertainties about their nominal values kio). The output

functions were the species concentrations [CH4, CH3, CH20, CHO, CO, CO2 ,

H20, 0, H, OH] at different times [lO -7 to 1O-2 seconds] after the initiation

of the reaction. Their analysis showed "that of the 23 reactions, plus their

inverses, included in the mechanism, only about 5-7 reactions (depending upon

the species in question) strongly affect the concentration of that species"

Their analysis thus provides an important example of how sensitivity analysis

can be used to simply complex models by segregating the "important" and

"unimportant" component equations.

* .
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V. Additional Research

There are a number of interesting and important problems which have

arisen during the course of this research and to which we have not had an

opportunity to address ourselves. We list them here briefly and hope

that some of the readers of this review and future practioners of this method

will be stimulated to carry out some work along these lines.

a) Postponement of Interferences:

In sections 2E and 2F above and in Appendix I, we have discussed the

problem of interference which arises from the unavoidable use of a set of

integer or rational frequencies. This effect can be

"postponed" in the sense that we can chose a high value of M (see Eq. Al.4),

the order of interference. As pointed out in refs. (1) through (3), how-

ever, the larger the chosen value of M1, the larger the maximum value max

of the input frequencies set Lw} and correspondingly, the larger the number

N of s-space points required for the evaluation of the Fourier amplitude.

Thus, a large value of M, which will minimize the interferences, will

appreciably increase the number of computations required for the calculation

of the Fourier amplitudes. As we have shown, for instance, in ref. (3),

806 points in s-space are required for the calculation of the Fourier

amplitudes Bw, for a 10 parameter system for M=4, while 8,520 points are

required for the same system when M=6. Since wmax will of course increase

with the number n of parameters ki, i=1,2,...,n, this problem becomes

particularly serious for systems with a large number of parameters.

One obvious way to circumvent this problem completely would be to use

a set of incommensurate frequencies w. Since this does not seem a feasible

on a computer with a finite register, the next best solution would be to

Owing to the symmetry properties of f's) discussed in Section (3.2), the number

of sample points required are only ore-half of those listed here.
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learn how to construct integer frequency sets {w} which will lead to

large values of fl for reasonable values of wmax* It is not clear how much

of an improvement can be achieved on the frequency sets already published

in our papers(1,2,3), but research along these lines is clearly desirable.

In this connection, attention should be called to our brief discussion

in section 2F(see Eq. 2.20) on the spacing of the N quadrature points

used in the calculation of the Fourier coefficients. It may well be possible

to increase the accuracy of the computed Fourier coefficients by a more

judicious choice of spacing which takes account of the oscillatory properties

of the output function f(s). Some work on this problem could be very useful.

b) Expansion of Output Function f

We have chosen in the work done so far to transform the output functions,

f into periodic functions on (0, 27), see Eq. (2.7), and then Fourier analyse

these functions to obtain their Fourier coefficients. Interestingly, there

is nothing sacrosanct in expanding f in terms of sine and cosine functions.

One could equally well expand f(u), the output function in u-space, in

terms of any other desired or useful set of orthogonal functions, such as,

for instance, Hermite polynomials. One would then have to establish again

the connection between the expansion coefficients and some "sensitivity measure"

as has been done above. It is not clear whether such expansions in terms

of other orthogonal functions would lead to a simpler or better (or worse)

theory of nonlinear sensitivity analysis, but it raises a question which

could usefully be pursued.

c) Information in Harmonics and Combination Frequencies

As discussed in the prqvious sections, the Fourier spectrum of the

output function contains harmonics and linear combinations of all the input

frequencies w., x = 1,2,...,n. In our earlier version of sensitivity analysis,

- - , ..86



references (1) through (3), we have used only the information contained in

the fundamentals w through the Fourier amplitudes B , Eq. (2.30). In the

partial variance method outlined in section b above we have made use also

of the harmonics of the fundamental frequencies for the construction of S

as in Eq. (2.26). As pointed out in that section, Eqs. (2.27) through (2.29),
it is also possible to construct higher partial variances S2 S2

I sk wL9wk~~)j
etc. corresponding to linear combinations of the fundamental frequencies w.,

wk' wj, etc. These higher partial variances contain increasingly more

detailed information about the coupling of sensitivity due to uncertainties

of groups of parameters. Such information is clearly of great importance

in studying the sensitivity of chemical and other complex rate systems since

the explicit rate laws for the output functions, if they could be obtained,

would most probably involve sums and products of various parameters. It would

therefore be most useful to explore the construction of higher partial variances

and analyze the information obtained from them in future applications of

the Fourier method of sensitivity analysis.

d) Correlated Parameters

In all the work described so far we have made the explicit assumption

that the system parameters k and their variation uj over any desired range

are uncorrelated. By this we mean that each parameter can be varied

independently of all other parameter or, equivalently, that to each parameter

one can assign a range of uncertainty with its probability distribution

independent of the uncertainty range assigned to all other parameters. This

is certainly valid for many physical systems where the parameters are indeed

independent of one another and can be determined, theoretically or experi-

mentally, independently of one another.
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In many economic and social model systems there are, however, correla-

tions betewen the parameters. Frequently it is not even poss4ble to define
K

parameters which are independent. The determinations of parameters In such

systems by fitting models to repeated observations leads to a set of

parameters which are statistically dependent, i.e. the range of uncertainty

of parameter ki may well be correlated with the uncertainty range of para-

meters k., k , etc.

To take proper account of such correlated parameters one needs to

modify the Fourier amplitude sensitivity method analysis. One way of doing

this is to incorporate the concept of correlated parameters into the formu-

lation of the sensitivity analysis theory from the outset. This means

that one can not use the ansatz (2.3) according to which the probability

density P(u).is written as the product of the P(ui). We have not pursued

this approach, and it is not clear what forms our theory will take when

this simplifying assumption does not hold. Research on this problem is

clearly of interest, particularly for the application of this method of

sensitivity analysis to economic model systems.
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Appendix I

The error c in approximating an integral over -space by a line integral

over the search curve, for the Fourier coefficients of frequencies

NZ (p=l, 2 ,...) is represented by the difference

(f(s)e ) - (f(o)e ) (f(o)e (AI)

Here, is given by the sum

= ' c r 6(r'w-Pw) (A.2)
r -

wnere the prime on the summation excludes the c term, i.e.,

the r = r2  ... = r. l  = ...rn = O,r, = pZ Fourier coefficient.

The Kronecker delta is defined as

1 for r.w = 0

= for 0(Al.3)

This result is obtained by using the definition, Eq. (2.14), of f() as a

multiple Fourier series in the 9i's in Eq. (Al.I). As can be seen from

Eq. (Al.2), each time r.w= pz, one obtains a contribution to the error

E made in equating the s and e space integrations. We refer to the values

of r which satisfy Zriw i = p as interferences. The weight of the error
1

is just the Fourier coefficient c r evaluated at the value of r for which

= pz . Since Fourier coefficients tend to decrease in magnitude as their

index r increases, we see that postponing the occurrence of interferences

to higher values of r will lead to a smaller error .
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It is convenient to define M1 , the order of an interference such that

r ' p zfor

n
r I(AI. )

The higher the order of interference, the smaller the error E for a given

output function.

The values of p which lead to interferences are controlled by the

choice of frequencies w. Thus, a "judicious" choice of w leads to error

terms which are small. By way of illustration we return to the two

dimensional frequency choices given in Eqs. (2.12). Let us say that we are

interested in the Fourier coefficient C2 , and thus p. = 2. For the first

choice (w, = 1, w2 = 2), the lowest interference arises when say p1 = 2,

P2= -I so, with reference to Eq. (Al.4), .1i: 1. This choice of frequencies

leads to a poor coverage of _ space and therefore a large error in equating

s and e space integrals. The second frequency choice, w = 11 2 = 13, leads

to an interference when p1 = 13 and P2  -11 so that M, = 22. The 9-space

coverage is much improved and we obtain a more accurate value for the 0-space

integration. By choosing frequencies which are increasingly incommensurate

as measured by an increasing value of the order of interference one has,

as MI , the strict equality of s and e space integration.

-90-
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Appendix IIo
The results of Appendix I must be modified to account for the use of

a finite number of points N that are used to carry out the s-space integration.

The difference between the s-space quadrature and the e-space average can be

written as

-c c*c (A2.)p pC

where here * is found to be (see ref. 3)

*. ' cr 6(r-w-p W -jl) (A2.2)

As in Eq. (Al.2), the prime on the summation excludes the coefficient

cr = c from the summations over ri (i = 1,2,...,n). The error E* now

includes contributions when r satisfies

--p; jfi ; j = ±l, ±2, ... (A2.3)

That is, in addition to the interference errors (those arising for j=O),

each time an integer multiple of N, the number of points in the quadrature,

equals the frequency n.-p i, an additional error, whose size is given by

the e-space Fourier coefficient of that frequency, also occurs. We term

these contributions to the error as aliases. The aliasing phenomena, which

arise from the finite number of points used to numerically evaluate the

Fourier coefficients, can also be controlled by appropriate choice of w

and N. Postponing the aliasing to vw!Iues of cr with r larger and larger will

yield a more accurate Fourier coefficient approximant C* . As for inter-

ferences, we define the order of an alias M2 such that r.w pw + JN

(j=tl, t2, ...)for

-g1-



n
S!ril<I (A2.4)

Postponing the occurrence of aliasing by appropriate choices of w and N

which lead to a large value of M decreases the error due to aliasing. For

further details see ref. (3).
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Appendix III

In the numerical computation of the Fourier coefficients, an N point

approximation to the u-space integration is used. In order to assess our

approximations, we have constructed upper bounds on the error made for given

%,N sets and classes of output functions to be analyzed. We have described

this error analysis in some detail in ref. (3) and will only sketch here its

features and adopt them to the new approach to sensitivity analysis developed

in this work.

The error made in the numerical evaluation of the Fourier coefficients

is just the difference between the N-point quadrature formula and the integral

over all u-space. For, if we could use a space filling search curve in u-

space, Weyl's theorem would be exact and the Fourier coefficient evaluation

would be exact. Thus, we define the error I. as

n' n
= ) - g. ( )1/I(-) (A3.)

q=l

where g(e) = f(_)eieL, - (elq' e2q,..., snq) and ejq = wjSq with

j = 1,2,...n. We now construct an upper bound AsuP to the error which

is a function of w,11 and the output function to be evaluated. Note

that g (e) is multiply periodic in e, and if the partial derivatives

P g9(e) : 9 n :* p

o p p-l; o-qj~p-l ; E '  p (A3.2)
aPI P2 a, Pn l
ei e2 .. oan

are of bounded variation, then the Fourier coefficients br of gL(e)
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defined by

g() = 2 br e (A )

satisfy

r $.pb g :9 n1l rj1 (A3.4)

with a independent of r and rj = max(1,frjl). The equality of Eq. (A3.4)

provides the Fourier coefficients bsuP for the construction of &SUP.r

That is, since g (e) is multiply periodic in a, we use its multiple Fourier

expansion in a and obtain

a 9 sup (A3.5)

with

Asup ? 2 bSUp 6(r.=-jrI). (A3.6)
r j=- -

One can readily construct the function gSUP(o_) whose Fourier coefficients

are bsuP and, with Eq. (A3.), find LsuP in terms of w,N and the propertiesr

of the output functions to bp considered. The description of the output

function is given by the boundedness of its partial derivatives as described

by the value of p in Eq. (A3.2). In this fashion we have in reference (3)

constructed bounds on the error for sets of w,N which we have used in

numerical calculations. The most important conclusion to be drawn from

the error analysis presented in reference (3) is that the Fourier coefficients

can be calculated with good accuracy by judicious choice of N and the frequency

set w_ and that comparison of Fourier coefficients with a "safety factor"

of about one order of magnitude yield valid sensitivity measures.
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The bounds on the Fourier coefficients can readily be combined to yield

bounds on the partial variances S * Thus, the Fourier coefficient analysis

is directly applicable to the partial variances. It is important to note

that as one examines the Fourier coefficients of higher harmonics of a

fundamental, the accuracy with which they are approximated degenerates

since one is using the same number and placement of points in a quadrature

formula involving a function which is increasingly more oscillatory.

However, the s-space Fourier coefficients themselves fall off in magnitude

as one works with higher frequencies so that the Fourier coefficients for

the higher frequencies do not have to be as precisely approximated as those

for the lower frequencies.
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Appendix IV

The part of the total variance o2 arising from the uncertainty of the

f'th parameter, when the out -.t function is averaged over the uncertainties

in all other parameters, is found by first integrating over all parameter

uncertainties except for the O'th. This integration is best done in _ space

where one may use the multiple Fourier decomposition of Eq. (2.14). Thus

f(e )=de 1  . id o .d+l...denf(e1, . . . e )

(A4.1)

c00 ...p  00exp [ip e)
"

P1 ,'

Now form the variance o 2 of f(e ) with respect to the uncertainty in

22

Iff If 20e)do-9 [/f(e )de.] 2 (A4.2)

SC00 .~.. .00,

* We have found before (cf. Eq. (2.18)) that the e-space Fourier coefficient

c 0  0  equals the s-space coefficient C so that o2 can also be

written as

a, - p1 I I (A4.3)
p=.4m

As before, we must modify this result to correspond to the finite summations.

We define o * to be

2* N 2 2 1 12  A+B*~ 1 *2
pz-(N/2-1 ) PW -p +  A/"W6
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'4ow form the quotientc 2*arising from the P~th parameter and the total
*2.

variance '2and call it S the partal variance
2.

N12 * 2

L p

S/2-1) (A4.5)

This result is Eq. (2.25) of the text.
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Appendix V

We wish to establish the symmetry relations

f(r/2 + s) = f(w/2- s) (A5.1)

f(-T/2 - s) =f(-/2 + s) (A5.2)

of the output function f(s) for -7/2 c s ! r/2 and to see how these

relations reduce the size of the discrete samples along the closed search

curve.

To do so, we stipulate that the i s are odd integers and set wi - 2k + 1.

Thus

sin[(2k+l)] = sin[(2k+l)(n-s)] = - sin[(2k+l)(r+s)] = - sin[(2k+l)(2-if-s)].

(A5.3)

Applying these identities to all the parameters, we establish

f(w-s) = f(sinw l (w-s), sinw2 (7r-s),...)

= f(sinwis,sin 2s,...) = f(s) (A5.4)

and

f(r+s) = f(-sin 1s,-sinw 2s,...) = f(2r-s) (A5.5)

Since f(s) = f(s+2n) by construction, eq. (A5.5) also implies

f(-v+s) = f(s) (A5.6)

Equation (A5.4) states that f(s) in the quadrant r/2cs cw is the mirror

image about w/2 of f(s) in the quadrant Ossw/2; eq. (A5.6) states that f(s)

in the quadrant -ncs!w/2 is .the mirror image about -w/2 of f(s) in the

quadrant -w/2:s4.

Thus we need only evaluate f(s) in the range =w/2f(s)ir/2. This reduces

the computational load by a factor of two relative to what was stated in

references (1) through (3).
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Appendix VI

The working equations of our sensitivity method yield the Fourier

coefficients of Eqs. (3.13). Here we show how to obtain these equations by

use of the symmetries of the output functions f(s) in s, Eqs. (3.8), and

the symmetries of the trigonometric functions.

The Fourier coefficients

At a 1 
2r

j rF q1 fq cos iSq
(A6.1)

2r
= f sin js

j r 1 q q

can be written, using these symmetries, as sums over the half interval

/2 z sq I 7/2

A* 1 [cosisq + cosis IfA]- --< -1)12 "'~

+l(r-l)/2

+ q l [cosisq + cosisrqIfq (A6.2)

(r l)/2[slnisq + slniSr-qfq (A6.3)

where we now define Sq m wq/r and set f(sq) -fq.

q~q

Application of the addition theorems for trigonometric functions allows

us to rewrite eqs. (AG,2) and (A6.3) as

(-l)1)f s + sir1)/2 I

r (fr-f)/21Jc2sf.r-cos
+l +I(A6.4)

F

-99 -- - -~ -- ~-~ -r- ) -
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(r-l )/2
[I -1 [1 (-I)Ji 1 [f -f I) sin

--Jq  (A6.5)
q=l -j"

Recalling that r Lm 2q+l we obtain the equations (3.13) given in section 3.
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Figure Captions

Figure 1: Definition of Terms for Sirulation Models.

Figure 2: 9-space coverage with frequencies wl = , = 2 and 100

quadrature points N. The lines are obtained from e9 = Ws(mod 2w)

0 : s ! 2 r and the points from eiq = s q(mod 2w) with

Sq = 27rq/14; q = 1,2,...N.

Figure 3: 0-space coverage with wI = 11, w2 = 13 and N = 100 computed

in the same fashion as in Figure 1.

Figure 4: Zero power gains versus tine for the v = 2-I, v = 3+2, and v = 4.3

vibrational transitions of HF. Curves show the time histories for

both the nominal parameter values and for the statistical mean

value (average over the parameter uncertainties).

Figure 5: Coefficients of variation of the gains on v - 2.1, v = 3+2, and

v = 4-3 vibrational transitions of HF, as functions of time.

Figure 6: Partial variances for the zero power gain of the v = 2.1 band

of HF. Curves are labeled by the rate coefficients to which

they correspond; [F]o curve is partial variance due to uncer-

tainty in initial F atom concentration.

Figure 7: Partial variances for the zero power gain of the v = 3-2 band

of HF. Curves are labeled by the rate coefficients to which

they correspond; [F] 0 curve is partial variance due to uncer-

tainty in initial F atom concentration.

Figure 8: Partial variances for the zero power gain of the v = 4+3 band of

HF. Curves are labeled by the rate coefficient to which they

correspond; [F]0 curve is partial variance due to uncertainty in

Initial F atom concentration.
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Figure 9: World population versus time.

Figure 10: Partial variances for world population. Curves are labeled by

parameters to which they correspond. Three parameters, POLN. BETA

and C have neglibible partial variances prior to 2320. After

that time they have partial variances about equal to those for

BPN and DRN. They are omitted from the figure so as not to

complicate it. Other parameters have negligible partial variances.

Figure 11: Quality of life versus time.

Figure 12: Partial variances of quality of life. Curves are labeled by the

parameters to which they correspond. The parameters POLN, BETA,

arl NRI have partial variances similar to CIDN. These are not

shown in the figure to avoid confusion. Other parameters have

negligible partial variances.
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